Analog Devices AD9763 Evaluation Board AD9763-EBZ AD9763-EBZ データシート

製品コード
AD9763-EBZ
ページ / 44
Data Sheet 
AD9763/AD9765/AD9767
 
Rev. G | Page 29 of 44 
500Ω
500Ω
225Ω
25Ω
25Ω
AD8055
I
OUTA
I
OUTB
225Ω
C
OPT
AVDD
1kΩ
AD9763/
AD9765/
AD9767
0
06
17-
0
74
 
Figure 74. Single-Supply DC Differential-Coupled Circuit 
SINGLE-ENDED, UNBUFFERED VOLTAGE OUTPUT 
Figure 75 shows the AD9763/AD9765/AD9767 configured to 
provide a unipolar output range of approximately 0 V to 0.5 V 
for a doubly terminated 50 Ω cable, because the nominal full-
scale current (I
OUTFS
) of 20 mA flows through the equivalent 
R
LOAD
 of 25 Ω. In this case, R
LOAD
 represents the equivalent load 
resistance seen by I
OUTA
 or I
OUTB
. The unused output (I
OUTA
 or I
OUTB
can be connected directly to ACOM or via a matching R
LOAD
Different values of I
OUTFS
 and R
LOAD
 can be selected as long as the 
positive compliance range is adhered to. One additional 
consideration in this mode is the INL (see the Analog Outputs 
section). For optimum INL performance, the single-ended, 
buffered voltage output configuration is suggested. 
50Ω
25Ω
50Ω
V
OUTA
 = 0V TO 0.5V
I
OUTFS
 = 20mA
I
OUTA
I
OUTB
AD9763/
AD9765/
AD9767
00
61
7-
0
75
 
Figure 75. 0 V to 0.5 V Unbuffered Voltage Output 
SINGLE-ENDED, BUFFERED VOLTAGE OUTPUT 
CONFIGURATION 
Figure 76 shows a buffered single-ended output configuration 
in which the U1 op amp performs an I-V conversion on the 
AD9763/AD9765/AD9767 output current. U1 maintains I
OUTA
 
(or I
OUTB
) at a virtual ground, thus minimizing the nonlinear 
output impedance effect on the INL performance of the DAC, 
as described in the Analog Outputs section. Although this single-
ended configuration typically provides the best dc linearity 
performance, its ac distortion performance at higher DAC update 
rates may be limited by the slewing capabilities of U1. U1 
provides a negative unipolar output voltage, and its full-scale 
output voltage is simply the product of R
FB
 and I
OUTFS
. Set the 
full-scale output within U1’s voltage output swing capabilities 
by scaling I
OUTFS
 and/or R
FB
. An improvement in ac distortion 
performance may result with a reduced I
OUTFS
 because the signal 
current U1 has to sink will be subsequently reduced. 
I
OUTFS
 = 10mA
U1
I
OUTA
I
OUTB
V
OUT
 = I
OUTFS
 × R
FB
C
OPT
200Ω
R
FB
200Ω
AD9763/
AD9765/
AD9767
00
61
7-
0
76
 
Figure 76. Unipolar Buffered Voltage Output 
POWER AND GROUNDING CONSIDERATIONS 
Power Supply Rejection 
Many applications seek high speed and high performance under 
less than ideal operating conditions. In these applications, the 
implementation and construction of the printed circuit board is 
as important as the circuit design. Proper RF techniques must 
be used for device selection, placement, and routing as well as 
power supply bypassing and grounding to ensure optimum 
performance. Figure 92 to Figure 93 illustrate recommended 
printed circuit board ground, power, and signal plane layouts 
that are implemented on the AD9763/AD9765/AD9767 
evaluation board. 
One factor that can measurably affect system performance is 
the ability of the DAC output to reject dc variations or ac noise 
superimposed on the analog or digital dc power distribution. 
This is referred to as the power supply rejection ratio (PSRR). 
For dc variations of the power supply, the resulting performance 
of the DAC directly corresponds to a gain error associated with 
the DAC’s full-scale current, I
OUTFS
. AC noise on the dc supplies 
is common in applications where the power distribution is 
generated by a switching power supply. Typically, switching 
power supply noise occurs over the spectrum of tens of 
kilohertz to several megahertz. The PSRR vs. frequency of the 
AD9763/AD9765/AD9767 AVDD supply over this frequency 
range is shown in Figure 77
90
70
85
80
75
P
S
RR
 (
d
B)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
FREQUENCY (MHz)
00
61
7-
0
77
 
Figure 77. AVDD Power Supply Rejection Ratio vs. Frequency