Teledyne Computer Monitor 651 ユーザーズマニュアル

ページ / 127
Teledyne API Ultrafine Particle Monitor - Model 651 
Technical Description 
07506C DCN6727 
55 
The sample flow is cooled with a thermoelectric device in the 
conditioner. The vapor passes into the growth tube where it 
becomes supersaturated and condenses onto the aerosol particles 
(acting as condensation nuclei) to form larger droplets. The 
droplets pass through a nozzle into the optical detector.  
 
The sensor’s optical detector is comprised of a laser diode, 
collimating lens, cylindrical lens, elliptical mirror, and photodiode 
detector. The laser and collimating lens form a horizontal ribbon of 
laser light above the aerosol exit nozzle. The collection mirror 
focuses the light scattered by the droplets at a 90° angle (side 
scatter) onto a low-noise photodiode. The main beam is blocked by 
a light-stop in the back of the sensing chamber. A reference 
photodiode is used to maintain constant laser power output. The 
surface temperature of the optics housing is maintained at a higher 
level than the growth tube to avoid condensation on the optical 
surfaces.  
The Model 651 operates in single particle count mode up to 10
6
 
particles/cm
3
. Rather than simply counting individual electrical 
pulses generated by light scattered from individual droplets, the 
Model 651 uses a continuous, live-time correction to improve 
counting accuracy at high particle concentrations. Live-time 
correction occurs when the presence of one particle obscures the 
presence of another particle creating an undercounting error that 
results in dead time.  
Pulse Height 
The Model 651 contains an electronic sub-system for monitoring 
the amplitude (voltage height) of the particle pulse generated by the 
optical detector. The actual amplitude of the pulse does not affect 
the particle counting performance as long as it is large enough to 
intercept the preset discriminator threshold. Typical pulse 
amplitudes (1 to 2 volts) are 10 to 40 times higher than the 
discriminator level which is typically 20 times higher than the RMS 
noise level of the photo-detector electronics. This large magnitude of 
‘signal-to-noise’ margin provides robustness in performance in the 
optical detection of droplets.  
Under normal operating conditions, the pulse amplitude decreases 
with increasing particle concentration. As particle concentration 
increases, depletion effects within the growth tube cause the 
nucleated droplets to grow to smaller sizes than they would at lower 
particle concentrations.  
Note: The droplet size has been reduced in this instrument compared 
to those of previous generations - reducing the variation in 
pulse amplitude with respect to particle concentration to about 
2:1 over the concentration range of the instrument.