Novatel SUPERSTAR II OM-20000077 ユーザーズマニュアル

ページ / 87
38
SUPERSTAR II User Manual Rev 3
Chapter 6
Positioning Modes of Operation
The following single frequency modes of operation are described further in this chapter:
• Single Point or Autonomous 
• Satellite-Based Augmentation System (SBAS)
See Appendix G, GPS Overview on Page 67 for an overview of GPS positioning.
6.1
Single-Point or Autonomous
The NovAtel SUPERSTAR II receiver is capable of absolute single-point positioning accuracies of < 5 meters 
CEP (GDOP < 2; no multipath).
The general level of accuracy available from single-point operation may be suitable for many types of 
applications that do not require position accuracies of better than 5 m CEP. However, increasingly more and 
more applications desire and require a much higher degree of accuracy and position confidence than is possible 
with single-point pseudorange positioning. This is where differential GPS (DGPS) plays a dominant role in 
higher accuracy real-time positioning systems, see also Section G.3, GPS Positioning on Page 69.
By averaging many GPS measurement epochs over several hours, it is possible to achieve a more accurate 
absolute position. 
The next section deals with the type of GPS system errors that can affect accuracy in single-point operation.
6.1.1
GPS System Errors
In general, GPS SPS C/A code single-point pseudorange positioning systems are capable of absolute position 
accuracies of about 5 meters or less. This level of accuracy is really only an estimation, and may vary widely 
depending on numerous GPS system biases, environmental conditions, as well as the GPS receiver design and 
engineering quality.
There are numerous factors which influence the single-point position accuracies of any GPS C/A code 
receiving system. As the following list will show, a receiver’s performance can vary widely when under the 
influences of these combined system and environmental biases.
Ionospheric Group Delays – The earth’s ionospheric layers cause varying degrees of GPS signal 
propagation delay. Ionization levels tend to be highest during daylight hours causing propagation 
delay errors of up to 30 meters, whereas night time levels are much lower and may be as low as 6 
meters.
Tropospheric Refraction Delays – The earth’s tropospheric layer causes GPS signal propagation 
delays. The amount of delay is at the minimum (about three metres) for satellite signals arriving from 
90 degrees above the horizon (overhead), and progressively increases as the angle above the horizon 
is reduced to zero where delay errors may be as much as 50 metres at the horizon.
Ephemeris Errors – Some degree of error always exists between the broadcast ephemeris’ predicted 
satellite position and the actual orbit position of the satellites. These errors will directly affect the 
accuracy of the range measurement.
Satellite Clock Errors – Some degree of error also exists between the actual satellite clock time and 
the clock time predicted by the broadcast data. This broadcast time error will cause some bias to the 
pseudorange measurements.
Receiver Clock Errors – Receiver clock error is the time difference between GPS receiver time and 
true GPS time. All GPS receivers have differing clock offsets from GPS time that vary from receiver 
to receiver by an unknown amount depending on the oscillator type and quality (TCXO verses