Bryan Boilers & 300 ユーザーズマニュアル

ページ / 81
 
Date:  
8-4-2010 
 
Revision: 0 
 
Form:  
2396
 
Lead Lag burner demand will be present when 
Frost protection burner demand is true, as 
described in the section on Frost protection. For 
the CH, and DHW demand sources, Lead Lag 
burner demand will be true when one of these is 
true and also setpoint demand from the 
hysteresis block is true. 
 
4.7.9 R
ATE 
A
LLOCATION
 
 
The PID block's output is used to determine the 
firing rate of each slave Sola using various rate 
allocation techniques. 
 
Common Features 
 
All rate allocation methods share certain 
features. The rate allocator first generates the 
Slave Command. 
Except for the Firing state, 
the value ultimately depends only upon the 
SlaveState
. The values are: 
 
Available 
AddStage 
SuspendStage depending on whether any other 
slave stage is firing, no matter what SlaveState it 
is in. 
Firing 
OnLeave - same as SuspendStage 
This ensures that when a slave returns and is 
already firing, it will remain firing until the master 
decides what to do about that, or if it is not firing 
it will remain off. 
Disabled - same as Available 
Recovering - same as Available 
It next runs a rate allocator that depends upon 
the rate allocation method. This routine fills in 
the modulation rate for all Firing boilers. 
 
Each rate allocation method also provides 
functions to return identification of the 
modulating stage and the last stage, for use by 
the Add-stage and Drop-stage methods. 
 
Rate Allocation Parameters 
 
BASE LOAD COMMON: 0-100% 
If set to zero, this parameter is disabled. For any 
non-zero value, it uses the individual base load 
rates of each slave to be ignored by the LL 
master's routines and this common value to be 
used instead. It is an easy way to set all base 
loads to the same value, without having to set 
each slave. Some rate allocation algorithms may 
specify the use of this parameter, and that the 
slave base load settings are ignored. 
 
RATE ALLOCATION METHOD: PARALLEL 
COMMONBASE LIMITED 
This selects the rate allocation method. This 
performs three purposes: 
 
it determines how the LL master allocates firing 
rate to each active stage, 
the modulating stage and last stage are 
determined for the Add-stage and Drop-stage 
methods, 
it determines the overflow rate and underflow 
rate and can provide this to staging algorithms. 
 
OVERFLOW RATE AND UNDERFLOW RATE 
The rate allocator knows the rate assigned to 
each stage, and the requested rate, and thus 
can determine the difference between these. 
 
This difference has two forms: overflow (used by 
Addstage methods), underflow (used by Drop-
stage methods). 
 
When asked for rate overflow the threshold that 
is used is the upper limit of the modulating stage 
per the current rate allocation rules. Additionally 
this threshold may be shifted if the Add-stage 
method is using a dRate/dt behavior. Rate 
overflow is a positive or negative percentage 
offset from the threshold. For example: 
 
If the modulating stage is at the staging 
threshold position but the  
 
LL master is not asking for more heat than this, 
then the overflow rate is 0%. If it is at this 
location (limited) or above this location 
(unlimited) and the LL master is asking for 10% 
more than the threshold value, then the overflow 
rate is 10%. If it is below the staging threshold 
position by 5%, then the overflow rate is -5%. 
 
When asked for rate underflow the threshold 
that is used is the minimum modulation rate of 
the last stage. Additionally this threshold may be 
shifted if the Dropstage method is using a 
dRate/dt behavior. 
 
Rate underflow is a positive or negative 
percentage offset from the threshold. For 
example: 
 
If the last stage is at the threshold position but 
68