Premier Mounts CDM-600 사용자 설명서

다운로드
페이지 250
CDM-600 Satellite Modem 
Revision 7 
Forward Error Correction Options MN/CDM600.IOM 
7–2 
IESS 308/309 standards for Viterbi decoding with a constraint length of seven. This is a de 
facto
 standard, even in a closed network environment, which means almost guaranteed inter-
operability with other manufacturer’s equipment.  It provides very useful levels of coding 
gain, and its short decoding delay and error-burst characteristics make it particularly suitable 
for low data rate coded voice applications. It has a short constraint length, fixed at 7, for all 
code rates. (The constraint length is defined as the number of output symbols from the encoder 
that are affected by a single input bit.) By choosing various coding rates (Rate 1/2, 3/4 or 7/8) 
the user can trade off coding gain for bandwidth expansion. Rate 1/2 coding gives the best 
improvement in error rate, but doubles the transmitted data rate, and hence doubles the 
occupied bandwidth of the signal. Rate 7/8 coding, at the other extreme, provides the most 
modest improvement in performance, but only expands the transmitted bandwidth by 14 %. A 
major advantage of the Viterbi decoding method is that the performance is independent of data 
rate, and does not display a pronounced threshold effect (i.e., does not fail rapidly below a 
certain value of Eb/No). This is not true of the Sequential decoding method, as explained in 
the section below. Note that in BPSK mode, the CDM-600 only permits a coding rate of 1/2.  
Because the method of convolutional coding used with Viterbi, the encoder does not preserve 
the original data intact, and is called non-systematic
 
Table 7-1.  Viterbi Decoding Summary 
FOR 
AGAINST 
Good BER performance - very useful coding gain. 
Higher coding gain possible with 
other methods 
Almost universally used, with de facto standards for constraint 
length and coding polynomials 
 
Shortest decoding delay (~100 bits) of any FEC scheme - good 
for coded voice, VOIP, etc 
 
Short constraint length produce small error bursts - good for 
coded voice. 
 
No pronounced threshold effect - fails gracefully. 
 
Coding gain independent of data rate. 
 
 
7.3 Sequential 
Although the method of convolutional coding and Sequential decoding appears to be very 
similar to the Viterbi method, there are some fundamental differences.  To begin with, the 
convolutional encoder is said to be systematic - it does not alter the input data, and the FEC 
overhead bits are simply appended to the data. Furthermore, the constraint length, k, is much 
longer (Rate 1/2, k=36. Rate 3/4, k= 63. Rate 7/8, k=87). This means that when the decoding 
process fails (that is, when its capacity to correct errors is exceeded) it produces a burst of 
errors which is in multiples of half the constraint length. An error distribution is produced 
which is markedly different to that of a Viterbi decoder. This gives rise to a pronounced 
threshold effect. A Sequential decoder does not fail gracefully - a reduction in Eb/No of just a 
few tenths of a dB can make the difference between acceptable BER and a complete loss of 
synchronization. The decoding algorithm itself (called the Fano algorithm) uses significantly 
more path memory (4 kbps in this case) than the equivalent Viterbi decoder, giving rise to 
increased latency. Furthermore, a fixed computational clock is used to process input symbols, 
and to search backwards and forwards in time to determine the correct decoding path. At