Premier Mounts CDM-600 사용자 설명서

다운로드
페이지 250
CDM-600 Satellite Modem 
Revision 7 
Forward Error Correction Options MN/CDM600.IOM 
7–6 
7.6 
Turbo Product Codec (Hardware Option) 
Turbo coding is an FEC technique developed within the last few years, which delivers 
significant performance improvements compared to more traditional techniques. Two general 
classes of Turbo Codes have been developed, Turbo Convolutional Codes (TCC), and Turbo 
Product Codes (TPC, a block coding technique). Comtech EF Data has chosen to implement 
an FEC codec based on TPC. A Turbo Product Code is a 2 or 3 dimensional array of block 
codes. Encoding is relatively straightforward, but decoding is a very complex process 
requiring multiple iterations of processing for maximum performance to be achieved.  
 
Unlike the popular method of concatenating a R-S codec with a primary FEC codec, Turbo 
Product Coding is an entirely stand-alone method. It does not require the complex 
interleaving/de-interleaving of the R-S approach, and consequently, decoding delays are 
significantly reduced. Furthermore, the traditional concatenated R-S schemes exhibit a very 
pronounced threshold effect – a small reduction in Eb/No can result in total loss of demod 
and decoder synchronization. TPC does not suffer from this problem – the demod and 
decoder remain synchronized down to the point where the output error rate becomes 
unusable. This is considered to be a particularly advantageous characteristic in a fading 
environment. Typically, in QPSK, 8-PSK and 16-QAM TPC modes the demod and decoder 
can remain synchronized 2 – 3 dB below the Viterbi/Reed-Solomon or TCM cases
7.7 
TPC and Low Density Parity Check (LDPC) coding 
7.7.1 Introduction 
In the past few years there has been an unprecedented resurgence in interest in Forward Error 
Correction (FEC) technology. The start of this new interest has its origins in the work done 
by Claude Berrou et al, and the landmark paper in 1993 - Near Shannon Limit Error 
Correcting Coding and Decoding - Turbo Codes
FEC is considered an essential component 
in all wireless and satellite communications in order to reduce the power and bandwidth 
requirements for reliable data transmission. 
 
Claude Shannon, considered by many to be the father of modern communications theory, first 
established, in his 1948 paper A Mathematical Theory of Communication, the concept of 
Channel Capacity. This places an absolute limit on how fast it is possible to transmit error-
free data within a channel of a given bandwidth, and with given noise conditions within that 
channel. He concluded that it would only be possible to approach this limit through the use of 
source encoding - what is familiar today as Forward Error Correction. He postulated that if it 
were possible to store every possible message in the receiver, finding the stored message that 
most closely matched the incoming message would yield an optimum decoding method. 
However, for all but the shortest bit sequences, the memory required for this, and the time 
taken to perform the comparisons, makes this approach impractical. For all practical 
purposes, the memory requirement and the decoding latency become infinite. 
 
For many years there were few advances in the quest to approach the Shannon Limit. The 
Viterbi algorithm heralded a major step forward, followed in the early 1990s by the 
concatenation of a Viterbi decoder with Reed-Solomon hard-decision block codes. However,