3com S7906E 설치 설명서

다운로드
페이지 2621
 
5-3 
Figure 5-3 Schematic diagram for WRR queuing 
 
 
Assume there are eight output queues on a port. WRR assigns each queue a weight value 
(represented by w7, w6, w5, w4, w3, w2, w1, or w0) to decide the proportion of resources assigned to 
the queue. On a 100 Mbps port, you can configure the weight values of WRR queuing to 5, 3, 1, 1, 5, 3, 
1, and 1 (corresponding to w7, w6, w5, w4, w3, w2, w1, and w0 respectively). In this way, the queue 
with the lowest priority is assured of 5 Mbps of bandwidth at least, thus avoiding the disadvantage of SP 
queuing that packets in low-priority queues may fail to be served for a long time.  
Another advantage of WRR queuing is that while the queues are scheduled in turn, the service time for 
each queue is not fixed, that is, if a queue is empty, the next queue will be scheduled immediately. This 
improves bandwidth resource use efficiency.  
WFQ queuing 
Figure 5-4 Schematic diagram for WFQ queuing 
Queue 1 Band width 1
……
Queue 2  Band width 2
Queue N-1 Band width N-1
Queue N Band width N
Packets to be sent through 
this port
Packet 
classification
Sent packets
Interface
Sending queue
Queue 
scheduling
 
 
WFQ is derived from fair queuing (FQ), which is designed for fairly sharing network resources, reducing 
the delay and jitter of all traffic. FQ fully consider the interests of all queues to ensure that: 
Different queues have fair dispatching opportunities, preventing a single queue from being delayed 
for too long.