Analog Devices AD9253 Evaluation Board AD9253-125EBZ AD9253-125EBZ 데이터 시트

제품 코드
AD9253-125EBZ
다운로드
페이지 40
AD9253 
Data Sheet
 
Rev. 0 | Page 22 of 40 
THEORY OF OPERATION 
 is a multistage, pipelined ADC. Each stage 
provides sufficient overlap to correct for flash errors in the 
preceding stage. The quantized outputs from each stage are 
combined into a final 14-bit result in the digital correction 
logic. The serializer transmits this converted data in a 16-bit 
output. The pipelined architecture permits the first stage to 
operate with a new input sample while the remaining stages 
operate with preceding samples. Sampling occurs on the rising 
edge of the clock. 
Each stage of the pipeline, excluding the last, consists of a low 
resolution flash ADC connected to a switched-capacitor DAC 
and an interstage residue amplifier (for example, a multiplying 
digital-to-analog converter (MDAC)). The residue amplifier 
magnifies the difference between the reconstructed DAC output 
and the flash input for the next stage in the pipeline. One bit of 
redundancy is used in each stage to facilitate digital correction 
of flash errors. The last stage simply consists of a flash ADC. 
The output staging block aligns the data, corrects errors, and 
passes the data to the output buffers. The data is then serialized 
and aligned to the frame and data clocks. 
ANALOG INPUT CONSIDERATIONS 
The analog input to th
 is a differential switched-
capacitor circuit designed for processing differential input 
signals. This circuit can support a wide common-mode range 
while maintaining excellent performance. By using an input 
common-mode voltage of midsupply, users can minimize 
signal-dependent errors and achieve optimum performance. 
S
S
H
C
PAR
C
SAMPLE
C
SAMPLE
C
PAR
VIN–x
H
S
S
H
VIN+x
H
10065-
05
1
 
Figure 55. Switched-Capacitor Input Circuit 
The clock signal alternately switches the input circuit between 
sample mode and hold mode (see Figure 55). When the input 
circuit is switched to sample mode, the signal source must be 
capable of charging the sample capacitors and settling within 
one-half of a clock cycle. A small resistor in series with each 
input can help reduce the peak transient current injected from 
the output stage of the driving source. In addition, low Q inductors 
or ferrite beads can be placed on each leg of the input to reduce 
high differential capacitance at the analog inputs and therefore 
achieve the maximum bandwidth of the ADC. Such use of low 
Q inductors or ferrite beads is required when driving the converter 
front end at high IF frequencies. Either a differential capacitor or 
two single-ended capacitors can be placed on the inputs to 
provide a matching passive network. This ultimately creates a 
low-pass filter at the input to limit unwanted broadband noise. 
See th
, the 
and the Analog Dialogue article “
” (Volume 39, April 2005) for 
more information. In general, the precise values depend on the 
application. 
Input Common Mode  
The analog inputs of the 
 are not internally dc-biased. 
Therefore, in ac-coupled applications, the user must provide 
this bias externally. Setting the device so that V
CM
 = AVDD/2 is 
recommended for optimum performance, but the device can 
function over a wider range with reasonable performance, as 
shown in Figure 56. 
An on-chip, common-mode voltage reference is included in the 
design and is available from the VCM pin. The VCM pin must 
be decoupled to ground by a 0.1 μF capacitor, as described in 
the Applications Information section. 
Maximum SNR performance is achieved by setting the ADC to 
the largest span in a differential configuration. In the case of the 
, the largest input span available is 2 V p-p.  
100
20
0.5
SN
R
/SF
D
R
 (
d
B
F
S/
d
B
c)
V
CM
 (V)
10
065
-052
30
40
50
60
70
80
90
0.7
0.9
1.1
1.3
SNRFS
SFDR
 
Figure 56. SNR/SFDR vs. Common-Mode Voltage,  
f
IN
 = 9.7 MHz, f
SAMPLE
 = 125 MSPS