Intel 200 Manual Do Utilizador

Página de 53
 
Thermal Metrology 
 
 
28  
 
Thermal and Mechanical Design Guidelines 
For reference thermal solution of Intel Celeron processor 200 sequence on Intel 
Desktop Board D201GLY2, the junction-to-local ambient thermal characterization 
parameter of the processor, Ψ
JA
, is comprised of Ψ
JS
, the thermal interface material 
thermal characterization parameter, Ψ
HS_BASE
 the thermal characterization parameter 
of the heatsink base from bottom center of heatsink base to top center of heatsink 
base surface, and of Ψ
S-TOP-A
, the sink-to-local ambient thermal characterization 
parameter: 
Equation 3    
Ψ
JA 
Ψ
JS
 + 
Ψ
HS_BASE
 + 
Ψ
S-TOP-A
 
Where: 
Ψ
JS
 
=  Thermal characterization parameter of the thermal interface material 
(°C/W) 
Ψ
 HS_BASE
 =  Thermal characterization parameter of the heatsink base (°C/W) 
Ψ
S-TOP-A
  =  Thermal characterization parameter from heatsink top to local 
ambient (°C/W) 
Ψ
JS
 is strongly dependent on the thermal conductivity, thickness and performance 
degradation across time of the TIM between the heatsink and processor die.   
Ψ
 HS_BASE
 is a measure of the thermal characterization parameter of the heatsink base.  
It is dependent on the heatsink base material, thermal conductivity, thickness and 
geometry.   
Ψ
S-TOP-A
 is a measure of the thermal characterization parameter from the top center 
point of the heatsink base to the local ambient air.  Ψ
S-TOP-A
 is dependent on the 
heatsink material, thermal conductivity, and geometry.  It is also strongly dependent 
on the air flow through the fins of the heatsink. 
Equation 4    (
Ψ
JA 
− Ψ
JS 
− Ψ
HS_BASE
× P
+ T
A
 = T
S-TOP-MAX 
With a given processor junction-to-local ambient requirement (Ψ
JA
) and TIM 
performance (Ψ
JS
) and processor power consumption (P
D
), the processor’s heatsink 
requirement (T
S-TOP-MAX
)
 
could be defined by Equation 4.