STMicroelectronics 19V - 90W Adapter with PFC for Laptop computers using the L6563H and L6699 EVL6699-90WADP EVL6699-90WADP Ficha De Dados

Códigos do produto
EVL6699-90WADP
Página de 38
Application information
L6699
18/38
Doc ID 022835 Rev 2
Figure 10.
Comparison startup behavior: traditional controller (left), with L6699 
(right)
A non-zero initial voltage on the resonant capacitor may cause the very first turn-on of the 
high-side MOSFET to occur with non-zero drain-to-source voltage while the body diode of 
the low-side MOSFET is conducting, therefore invoking its reverse recovery. More hard-
switching cycles may follow (see the left-hand image in 
). These events are few but 
potentially hazardous: they could cause the destruction of both MOSFETs, should the 
resulting dv/dt across the low-side MOSFET exceed its maximum rating (see 
 for more details).
To prevent this hard-switching cycle(s) with body diode reverse recovery, the L6699 waits 
about 50 
µ
s after the pre-charge time before starting switching (see the right-hand image in 
). This idle time is normally long enough to let the tank current decay to essentially 
zero in case of an initially charged resonant capacitor. On the other hand, it is too short for 
the bootstrap capacitor to be significantly discharged.
To understand the origin of transformer flux imbalance it is worth remembering that the half 
bridge is driven with 50% duty cycle, so that under steady-state conditions the voltage 
across the resonant capacitor Cr has a DC component equal to Vin/2. Consequently, the 
transformer's primary winding is symmetrically driven by a ± Vin/2 square wave. 
At startup, however, the voltage across Cr is often quite different from Vin/2, so it takes 
some time for its DC component to reach the steady-state value Vin/2. During this transient, 
the transformer is not driven symmetrically and, then, there is a significant V·s imbalance in 
two consecutive half-cycles. If this imbalance is large, there is a significant difference in the 
up and down slopes of the tank current and, the duration of the two half-cycles being the 
same, the current may not reverse in a switching half-cycle, as shown in the left-hand image 
in 
. Once again, one MOSFET can be turned on while the body diode of the other 
is conducting and this may happen for a few cycles. 
To prevent this, the L6699 is provided with a proprietary circuit that modifies the normal 
operation of the oscillator during the initial switching cycles, so that the initial V·s unbalance 
is nearly eliminated. Its operation is such that current reversal in every switching half-cycle 
and, then, soft-switching is ensured.