Техническая Спецификация для Linear Technology LTC4366-1 Demoboard, Very High Voltage Surge Stopper with Latchoff DC1850A-A DC1850A-A

Модели
DC1850A-A
Скачать
Страница из 24
LTC4366-1/LTC4366-2
436612fd
For more information 
www.linear.com/LTC4366
11
applicaTions inForMaTion
The typical LTC4366 application is a protected system 
that distributes power to loads safe from overvoltage 
transients. External component selection is discussed in 
the following sections.
Dual Shunt Regulators
The LTC4366 uses two shunt regulators coupled with 
the external voltage dropping resistors, R
SS
 and R
IN
, to 
generate internal supply rails at the V
DD
 and OUT pins. 
These shunt-regulated rails allow overvoltage protection 
from unlimited high voltage transients irrespective of the 
voltage rating of the LTC4366’s internal circuitry.
At the beginning of start-up, during shutdown, or after an 
overvoltage fault, the GATE pin is clamped to the OUT pin 
thereby shutting off the MOSFET. This allows the V
SS
 and 
OUT pins to be pulled to ground by output load and R
SS
Under this condition the V
DD
 pin is clamped with a 12V 
shunt regulator to V
SS
. The full supply voltage minus 12V 
is then impressed on the R
IN
 resistor which sets the shunt 
current. The shunt current can be as high as 10mA which 
is several orders of magnitude higher than the typical 9µA 
V
DD
 pin quiescent current.
In normal operation the OUT voltage is equal to the input 
supply. With C1 fully charged I
C1
 is zero at this point. Under 
this condition the voltage between the OUT and V
SS
 pins 
are clamped with a 5.7V shunt regulator. The input supply 
voltage minus 5.7V is impressed on R
SS
. The R
SS
 current 
is divided into three areas: the 5.7V shunt current, bias 
current between OUT and V
SS
 and finally the R
IN 
current. 
The 5.7V shunt current can be as high as 10mA which 
greatly exceeds the typical OUT (160µA) bias current. 
Turn-On Sequence
The voltage between the V
DD
 and V
SS
 pins is shunt regu-
lated to 12V after ramping up the input supply. Next, the 
internally generated supply, V
CC
, produces a 30µs power-
on-reset pulse which clears the fault latch and initializes 
internal latches. Next, the shutdown comparator determines 
if the SD pin is externally pulled low, thereby requesting a 
low bias current shutdown state. Otherwise the external 
MOSFET, M1, is allowed to turn on.
Turning on the 7.5µA GATE pull-up current source from the 
V
DD
 pin begins what can be described as a “bootstrapped” 
method for powering up the MOSFET gate. Once the GATE 
reaches the V
DD
 pin voltage (minus a Schottky diode), the 
7.5µA source loses voltage headroom and stops charging 
the GATE (middle of waveforms in Figure 2.). The bootstrap 
method relies on charging C1 to a sufficient voltage after 
GATE stops increasing. The voltage on C1 is then used as 
a supply for a charge pump that charges the gate to its 
final value 12V above OUT. C1 will discharge if the charge 
pump current exceeds the C1 charging current. If the 
voltage drops below 4.35V, the charge pump will pause 
allowing C1 to recharge.
V
DD
SD
R1
470k
R2
100k
OUT
C
G
10nF
GATE
M1
FQA62N25C
SD
FB
C
T
10nF
C1
0.47µF
R
FB1
12.4k
V
OUT
1.5A
(43V CLAMP)
V
IN
28V
(18V DC TO 250V DC)
R
FB2
422k
436612 F01
R
SS
46.4k
R
G
10Ω
R
IN
324k
Q1
MMBT3904
LTC4366-2
TIMER
BASE
V
SS
Figure 1. Typical Application
Figure 2. Turn-On Waveforms
V
GATE
10V/DIV
V
OUT
10V/DIV
V
C1
5V/DIV
20ms/DIV
436612 TA01b
CHARGE 
PUMP PAUSE
CHARGE 
PUMP STARTS
C1 CHARGING
C1 RECHARGING