Техническая Спецификация для Intel E3-1105C AV8062701048800

Модели
AV8062701048800
Скачать
Страница из 164
Thermal Management
Intel
®
 Xeon
®
 and Intel
®
 Core™ Processors For Communications Infrastructure
May 2012
Datasheet - Volume 1 of 2
Document Number: 327405
-
001
67
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target thermal 
design current (I
CCTDC
) instead of maximum current. Systems should still provide 
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case 
of system cooling failure. Overall, the system thermal design should allow the power 
delivery circuitry to operate within its temperature specification even while the 
processor is operating at its TDP.
7.3.1.3.3
Thermal Solution Design and PROCHOT# Behavior
With a properly designed and characterized thermal solution, it is anticipated that 
PROCHOT# is only asserted for very short periods of time when running the most 
power intensive applications. The processor performance impact due to these brief 
periods of TCC activation is expected to be so minor that it would be immeasurable.
However, an under-designed thermal solution that is not able to prevent excessive 
assertion of PROCHOT# in the anticipated ambient environment may:
• Cause a noticeable performance loss.
• Result in prolonged operation at or above the specified maximum junction 
temperature and affect the long-term reliability of the processor.
• May be incapable of cooling the processor even when the TCC is active continuously 
(in extreme situations).
See the 2nd Generation Intel
®
 Core™ Processor For Communications Infrastructure 
Thermal/Mechanical Design Guide for information on implementing the bi-directional 
PROCHOT# feature and designing a compliant thermal solution.
7.3.1.3.4
Low-Power States and PROCHOT# Behavior
If the processor enters a low-power package idle state such as C3 or C6/C7 with 
PROCHOT# asserted, PROCHOT# remains asserted until:
• The processor exits the low-power state
• The processor junction temperature drops below the thermal trip point.
For the package C7 state, PROCHOT# may deassert for the duration of C7 state 
residency even if the processor enters the idle state operating at the TCC activation 
temperature. The PECI interface is fully operational during all C-states and it is 
expected that the platform continues to manage processor (“package”) core thermals 
even during idle states by regularly polling for thermal data over PECI.
7.3.1.3.5
THERMTRIP# Signal
Regardless of enabling the automatic or on-demand modes, in the event of a 
catastrophic cooling failure, the package automatically shuts down when the silicon has 
reached an elevated temperature that risks physical damage to the product. At this 
point the THERMTRIP# signal is active.
7.3.1.3.6
Critical Temperature Detection
Critical Temperature detection is performed by monitoring the package temperature. 
This feature is intended for graceful shutdown before the THERMTRIP# is activated, 
however, the processor execution is not guaranteed between critical temperature and 
THERMTRIP#. If the package's Adaptive Thermal Monitor is triggered and the 
temperature remains high, a critical temperature status and sticky bit are latched in the 
PACKAGE_THERM_STATUS MSR 1B1h and also generates a thermal interrupt if 
enabled. For more details on the interrupt mechanism, see the Intel
®
 64 and IA-32 
Architectures Software Developer's Manuals.