National Instruments 1142 用户手册

下载
页码 86
Chapter 4
Theory of Operation
4-6
ni.com
As Figure 4-2b shows, a real filter has ripple (an uneven variation in 
attenuation versus frequency) in the passband, a transition region between 
the passband and the stopband, and a stopband with finite attenuation and 
ripple.
In addition, real filters have some nonlinearity in their phase response. This 
causes signal components at higher frequencies to be delayed by longer 
times than signal components at lower frequencies, resulting in an overall 
shape distortion of the signal. You can observe this when a square wave or 
step input is sent through a lowpass filter. An ideal filter simply smooths the 
edges of the input signal, whereas a real filter causes some ringing in the 
total signal because the higher-frequency components of the signal are 
delayed. Figure 4-3 shows examples of these responses to a step input.
Figure 4-3.  Real and Ideal Filter Responses to a Step Input Signal
Performance of the SCXI-1141/1142/1143 Module Filters
The SCXI-1141/1142/1143 module is elliptic, Bessel, and Butterworth 
filters, respectively. Each filter design optimizes a particular set of 
characteristics. Therefore, selecting the appropriate module depends on 
the application.
Magnitude Response
The magnitude response is the amplitude of the output at a given frequency. 
The typical magnitude response of the SCXI-1141/1142/1143 module 
filters is shown in Figures 4-4 an4-5. Figure 4-4 shows the full magnitude 
response and Figure 4-5 shows the ripple in the passband. Both graphs are 
plotted with the frequency axis normalized to the cutoff frequency value 
of 1.
b. Ideal Filter Response
a. Input Signal
Volts
Volts
Time
Time
c. Real Filter Response
Volts
Time