National Instruments 370757C-01 用户手册

下载
页码 71
Chapter 2
Robustness Analysis
© National Instruments Corporation
2-13
of generality—so, roughly speaking, it can be solved. [SD83,SD84] 
discusses this optimization problem. 
Notice that:
so you have the following from Equation 2-5:
This inequality is thought to be nearly an equality, so that the left side is a 
good engineering approximation to the right side. No theory supports this 
generally held belief, but no example is known where the left side is more 
than 15% larger than the right side. Equality can be shown to hold provided 
k
 ≤ 3—for example, if there are three or fewer uncertain transfer functions 
[Doy82]. 
Note
The approximation equation of 
μ(M) (Equation 2-5) is an upper bound. This means 
that the stability margin calculated using this approximation is conservative, that is, less 
than the actual stability margin. This optimization problem itself can be difficult. Osborne 
[Osb60] and Safonov [Saf82] provide two methods for finding good suboptimal scalings 
for Equation 2-5. 
Both Osborne’s and Safonov’s Perron-Frobenius scalings usually have 
been found to be close to the optimum for the optimization problem 
equation. The resulting approximations,
are thought to be good engineering approximations to 
μ. 
optscale( )
 
provides an iterative optimization function based on the ellipsoid 
algorithm.
σ
max
M
( )
σ DMD
1
(
)
=
for
D
1
=
σ
max
M
( ) μ M
( )
uˆ
OS
M
( ) σ
max
D
OS
MD
OS
1
(
)
=
uˆ
PF
M
( ) σ
max
D
PF
MD
PF
1
(
)
=