National Instruments 370757C-01 用户手册

下载
页码 71
Chapter 4
Controller Synthesis
4-4
ni.com
The transfer matrix G can be viewed as a model of the underlying system 
dynamics with v and u as generalized forces that produce effects in the 
performance signals z and measured signals y
The weight W
in
 is used to model the exogenous input v by W
in
w.
Similarly, the critical performance variables in the vector z are weighted to 
form the normal critical variables W
out
z.
In general, the input weight W
in
 can be viewed as a dynamic model of the 
exogenous inputs and the output weight W
out
 as the inverse of the desired 
performance. As an illustration, consider the plant configuration in 
Figure 4-3. 
Figure 4-3.  Typical Plant Configuration
The exogenous input vectors d and n represent disturbances and sensor 
noise, respectively. These are generated by passing normalized 
unpredictable signals, 
ω
dist
 and 
ω
noise
, through stable transfer matrices, 
W
dist
and W
noise
, respectively. The critical performance variables are some 
regulated variables y
reg
, as well as the actuator commands u. These are 
weighed by the transfer matrices W
reg
 and W
act 
to form the normalized error 
variables e
reg
 and e
act
. The sensed variables y
sens
 are contaminated by 
additive noise n to form the measured signal y. The transfer matrix G
dyn
 
represents the underlying system dynamics. Observe that the transfer 
matrix G, as defined in [BBK88], consists of G
dyn
 with some special 
output/input connections among the variables n and u as depicted in 
Figure 4-3. This is in the form of the familiar LQG setup, except that 
w
d
n
y
reg
y
sens
u
e
u
y
P
W
dist
w
dist
W
in
W
reg
W
out
w
e
W
noise
w
noise
e
reg
e
act
W
act
G
dyn
G