National Instruments ni matrixx xmath 用户手册

下载
页码 127
Chapter 3
Multiplicative Error Reduction
3-14
ni.com
There is one potential source of failure of the algorithm. Because G(s) is 
stable, 
 certainly will be, as its poles will be in the left half plane circle 
on diameter 
. If 
 acquires a pole outside this circle 
(but still in the left half plane of course)—and this appears possible in 
principle—G
r
(s) will then acquire a pole in Re [s] > 0. Should this difficulty 
be encountered, a smaller value of 
ε should be used.
Related Functions
redschur()
mulhank()
mulhank( )
[SysR,HSV] = mulhank(Sys,{nsr,left,right,bound,method})
The 
mulhank( )
 function calculates an optimal Hankel norm reduction of 
Sys
 for the multiplicative case.
Restrictions
This function has the following restrictions:
The user must ensure that the input system is stable and nonsingular at 
= infinity.
The algorithm may be problematic if the input system has a zero on the 
j
ω-axis.
Only continuous systems are accepted; for discrete systems use 
makecontinuous( )
 before calling 
mulhank( )
, then discretize 
the result.
Sys=mulhank(makecontinuous(SysD));
SysD=discretize(Sys);
Algorithm
The objective of the algorithm, like 
bst( )
, is to approximate a high order 
square stable transfer function matrix G(s) by a lower order G
r
(s) with 
either 
 or 
 (approximately) minimized, 
under the constraint that G
r
 is stable and of prescribed order. 
The algorithm has the property that right half plane zeros of G(s) are 
retained as zeros of G
r
(s). This means that if G(s) has order NS with N
+
 
zeros in Re[s] > 0, G
r
(s) must have degree at least N
+
—else, given that it 
has N
+
 zeros in Re[s] > 0 it would not be proper, [GrA89]. 
G˜ s
( )
ε
j0 0
,
=
(
)
G˜
r
s
( )
G G
r
(
)G
1
G
1
G G
r
(
)