National Instruments 370757C-01 用户手册

下载
页码 71
Chapter 2
Robustness Analysis
© National Instruments Corporation
2-15
ssv( )
[v,vD] = SSV(M, {scaling})
The 
ssv( )
 function computes an approximation (and guaranteed upper 
bound) to the Scaled Singular Value of a complex square matrix M, where 
M can be a reducible matrix. The scaled singular value v(M) is defined by:  
Scaling can be accomplished with one of three algorithms:
Perron-Frobenius—If 
{scaling="PF"}
 Safonov’s 
Perron-Frobenius method [Saf82] is used. This method finds the scaled 
singular value for non-negative real matrices M. In general, it is 
suboptimal if M is complex. This algorithm is the default because 
empirical tests show that is the fastest of the three.
Osborne—If 
{scaling="OS"}
, Osborne’s Method [Osb60] is used. 
This method solves the problem of finding D
O
 such that
where D is diagonal and positive, and 
 is the Frobenius norm. 
Thus, the Osborne method minimizes the Frobenius norm, and is 
therefore suboptimal.
Optimal—If 
{scaling="OPT"}
, Boyd’s ellipsoid algorithm 
[BYB89] is used. This algorithm computes the scaled singular value 
to a guaranteed accuracy. It is, however, the most computationally 
expensive of the three algorithms.
ssv( ) Examples
Consider the complex matrix M
M = [–1, jay, 0; 0, 2*jay, 1+jay;1, 0, 1];
ssv( )
 can return the optimally scaled singular value of M using Osborne, 
Perron-Frobenius, or Boyd methods:  
VOS=ssv(M,{scaling="OS"})
VOS (a scalar) =   2.56723
VPF=ssv(M,{scaling="PF"})
VPF (a scalar) =   2.45133
v M
( ) =
inf
σ DMD
1
(
)
D
C
n n
×
det D
( ) 0 dia
,
,
gonal
D
O
MD
O
1
inf
D diagonal
DMD
1
F
F