Intel Pentium D 830 HH80551PG0802MN Data Sheet

Product codes
HH80551PG0802MN
Page of 106
 
Datasheet
81
Thermal Specifications and Design Considerations
As a bi-directional signal, PROCHOT# allows for some protection of various components from 
over-temperature situations. The PROCHOT# signal is bi-directional in that it can either signal 
when the processor (either core) has reached its maximum operating temperature or be driven from 
an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can 
provide a means for thermal protection of system components. 
Bi-directional PROCHOT# (if enabled) can allow VR thermal designs to target maximum 
sustained current instead of maximum current. Systems should still provide proper cooling for the 
VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The 
system thermal design should allow the power delivery circuitry to operate within its temperature 
specification even while the processor is operating at its Thermal Design Power. With a properly 
designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would 
only be asserted for very short periods of time when running the most power intensive applications. 
An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# 
in the anticipated ambient environment may cause a noticeable performance loss. Refer to the 
Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775 for details on 
implementing the bi-directional PROCHOT# feature. Contact your Intel representative for further 
details and documentation.
5.2.4
FORCEPR# Signal Pin
The FORCEPR# (force power reduction) input can be used by the platform to cause the processor 
(both cores) to activate the TCC. If the Thermal Monitor is enabled, the TCC will be activated 
upon the assertion of the FORCEPR# signal. The TCC will remain active until the system de-
asserts FORCEPR#. FORCEPR# is an asynchronous input.
FORCEPR# can be used to thermally protect other system components. To use the VR as an 
example, when the FORCEPR# pin is asserted, the TCC circuit in the processor (both cores) will 
activate, reducing the current consumption of the processor and the corresponding temperature of 
the VR. 
It should be noted that assertion of the FORCEPR# does not automatically assert PROCHOT#. As 
mentioned previously, the PROCHOT# signal is asserted when a high temperature situation is 
detected. A minimum pulse width of 500 µs is recommend when the FORCEPR# is asserted by the 
system. Sustained activation of the FORCEPR# pin may cause noticeable platform performance 
degradation.
One application is the thermal protection of voltage regulators (VR). System designers can create a 
circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR 
is reached. By asserting FORCEPR# (pulled-low) and activating the TCC, the VR can cool down 
as a result of reduced processor power consumption. FORCEPR# can allow VR thermal designs to 
target maximum sustained current instead of maximum current. Systems should still provide 
proper cooling for the VR, and rely on FORCEPR# only as a backup in case of system cooling 
failure. The system thermal design should allow the power delivery circuitry to operate within its 
temperature specification even while the processor is operating at its Thermal Design Power. With 
a properly designed and characterized thermal solution, it is anticipated that FORCEPR# would 
only be asserted for very short periods of time when running the most power intensive applications. 
An under-designed thermal solution that is not able to prevent excessive assertion of FORCEPR# 
in the anticipated ambient environment may cause a noticeable performance loss. Refer to the 
Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775 for details on 
implementing the FORCEPR# feature. Contact your Intel representative for further details and 
documentation.