Nxp Semiconductors LPC2917 User Manual

Page of 68
DR
AFT 
DR
AFT 
DRAFT 
DR
D
RAFT 
DRAFT 
DRA
FT DRAF
D
RAFT DRAFT DRAFT DRAFT DRAFT D
DRAFT 
D
RAFT DRA
FT DRAFT DRAFT DRAFT DRA
LPC2917_19_1
© NXP B.V. 2007. All rights reserved.
Preliminary data sheet
Rev. 1.01 — 15 November 2007 
37 of 68
NXP Semiconductors
LPC2917/19
ARM9 microcontroller with CAN and LIN
8.7.5.4
ADC clock description
The ADC modules are clocked from two different sources; CLK_MSCSS_ADCx_VPB and 
CLK_ADCx (x = 1 or 2), se
. Note that each ADC has its own CLK_ADCx 
and CLK_MSCSS_ADCx_VPB branch clocks for power management. If an ADC is 
unused both its CLK_MSCSS_ADCx_VPB and CLK_ADCx can be switched off.
The frequency of all the CLK_MSCSS_ADCx_VPB clocks is identical to 
CLK_MSCSS_VPB since they are derived from the same base clock 
BASE_MSCSS_CLK. Likewise the frequency of all the CLK_ADCx clocks is identical 
since they are derived from the same base clock BASE_ADC_CLK. 
The register interface towards the system bus is clocked by CLK_MSCSS_ADCx_VPB. 
Control logic for the analog section of the ADC is clocked by CLK_ADCx, see also 
.
8.7.6 PWM
8.7.6.1
Overview
The MSCSS in the LPC2917/19 includes four PWM modules with the following features.
Six pulse-width modulated output signals
Double edge features (rising and falling edges programmed individually)
Optional interrupt generation on match (each edge)
Different operation modes: continuous or run-once
16-bit PWM counter and 16-bit prescale counter allow a large range of PWM periods
A protective mode (TRAP) holding the output in a software-controllable state and with 
optional interrupt generation on a trap event
Three capture registers and capture trigger pins with optional interrupt generation on 
a capture event
Interrupt generation on match event, capture event, PWM counter overflow or trap 
event
A burst mode mixing the external carrier signal with internally generated PWM
Programmable sync-delay output to trigger other PWM modules (master/slave 
behavior)
8.7.6.2
Description
The ability to provide flexible waveforms allows PWM blocks to be used in multiple 
applications; e.g. automotive dimmer/lamp control and fan control. Pulse-width 
modulation is the preferred method for regulating power since no additional heat is 
generated and it is energy-efficient when compared with linear-regulating voltage control 
networks.
The PWM delivers the waveforms/pulses of the desired duty cycles and cycle periods. A 
very basic application of these pulses can be in controlling the amount of power 
transferred to a load. Since the duty cycle of the pulses can be controlled, the desired 
amount of power can be transferred for a controlled duration. Two examples of such 
applications are: