Greisinger GLF 100RW Meter for reading performance ability GLF 100 RW ±(1% + 1 Count) -5 to +100 °C 600330 Hoja De Datos

Los códigos de productos
600330
Descargar
Página de 8
H66.0.02.6C-03 
Operating Manual GLF 100 RW 
Page 7 of 8 
12 General information about low conductivity measuring 
The Conductivity Measuring Cell 
During the measurement, the conductivity measuring cell must be dipped at least in so far, that at least 25 mm 
beginning from the top of the measuring cell, is located in the medium. The measuring chamber between the inner 
electrode and the outer electrode must not contain air bubbles during the measuring, a sufficient flow through the 
measuring chamber is necessary for precise results. 
 
 
 
The measuring cell can either be stored dry or in water. If changing over from one liquid to another with conductivities 
varying widely make sure to properly rinse and shake dry measuring cell. 
Attention: The measuring cell must never come into contact with water-repellent materials such as oil or 
silicone. Any soiling of the inner part of the measuring cell has to be avoided! 
Clear only with de-ionized/de mineralized water or alcohol. 
12.1  Measuring hints 
According to the high influence of even smallest contaminations special care has to be taken when handling the 
measuring cell. 
The precision of the instrument is very constant if it is used as intended. Depending on the necessary accuracy the 
instruments can be used up to several years without recalibration of the cell, if treated carefully. 
 If the accuracy should be controlled or improved, this is done by means of suitable reference solutions, 
e.g. 84 µS/cm and the adjusting of the cells scale adjustment. 
Attention! Wrong handling of reference solution can make them useless very fast. 
General: Tap water is no pure water and commonly has a conductivity of several 100 µS/cm. The upper range of the 
GLF 100 RW is 100µS/cm, therefore it is not suitable to measure tap-water. 
12.2  Measuring procedure: 
Before immersion to the measuring solution, rinse the electrode with deionised water, dry with a paper towel and 
shake remaining water out. 
The measuring is speeded up considerably, if the electrode is immersed and pulled out the solution several times. 
Be aware that no air bubbles are in the electrode, if so; repel them by knocking at the electrode. 
 
During the measuring the electrode needs sufficient flow, e.g. via stirring the solution. 
When temperature compensation is activated, the electrode needs enough time to adjust to the actual temperature of 
the measuring solution to work accurate. 
 
When analysing pure water in 
piping‟s we suggest the usage of a suitable flow armature. 
 
Attention! Pure water solves the carbon dioxide of the ambient air, the resulting carbonic acid increases the 
conductivity, if an open storage of the solution is used (Value may rise up to several µS/cm) 
12.3  Temperature compensations 
The conductivity of aqueous solution is temperature dependent. The dependency itself is strongly dependent on the 
kind of solution. For different applications therefore different means of temperature compensations are applicable: 
nLF: natural water 
For many applications in the higher measuring range of the instrument the non linear temperature compensation of 
natural waters is precise (“nLF” according to EN 27888). The most common reference temperature is 25 °C. 
Lin: Linear temperature compensation 
If it is only measured in a narrow conductivity range, the temperature compensation factor of this range can be 
determined. The exact temperature coefficient can be entered via instruments configuration. 
 
 
 
NaCl: weak NaCl solutions 
Especially at pure water analysis the kind of contamination is determined by the application itself and well known. 
Often NaCl contamination is the main source of conductivity. In such cases the temperature compensation of weak 
NaCl-solutions acc. to DIN EN 60746-3 is a precise compensation method.