Intel 820E Benutzerhandbuch

Seite von 239
  
Intel
®
 820E Chipset 
R
 
 
 
Design Guide 
 
111 
should be kept at least 0.3 inch from the nearest receive trace. Possible exceptions are only where 
the traces enter or exit the magnetics, the RJ-45/11, and the PLC. 
6.  Use of an inferior magnetics module. The magnetics modules used by Intel have been fully tested 
for IEEE PLC conformance, for long-cable BER, and for emissions and immunity. (Inferior 
magnetics modules often have less common-mode rejection and/or no autotransformer in the 
transmit channel.) 
7.  Using an Intel
®
 
82555 or Intel
®
 
82558 component’s physical layer schematic in a PLC design
The transmit terminations and decoupling are different and there also are differences in the receive 
circuit. Please use the appropriate reference schematic or Application Notes. 
8.  Failure to use (or incorrect use of) the termination circuits for the unused pins at the RJ-45/11 
and for the wire-side center-taps of the magnetics modules. Unused RJ pins and wire-side 
center-taps must be correctly referenced to chassis ground via the proper-value resistor and a 
capacitance or termplane. If these are not terminated properly, there can be emissions (i.e., FCC) 
problems, IEEE conformance issues, and long-cable noise (BER) problems. The Application Notes 
have schematics that illustrate the proper termination for unused RJ pins and the magnetics center-
taps. 
9.  Incorrect differential trace impedances. It is important to have an approximately 100 
Ω
 
impedance between the two traces within a differential pair. This becomes even more important as 
the differential traces become longer. It is very common to see customer designs with differential 
trace impedances between 75 
Ω
 and 85 
Ω
, even when the designers think they have designed for 
100 
Ω
. (To calculate differential impedance, many impedance calculators only multiply the single-
ended impedance by two. This does not take into account edge-to-edge capacitive coupling between 
the two traces. When the two traces within a differential pair are kept close to each other (see Note), 
the edge coupling can lower the effective differential impedance by 5 
Ω
 to 20 
Ω
. A 10 
Ω
 to 15 
Ω
 
drop in impedance is common.) Short traces will have fewer problems if the differential impedance 
is a little off. 
10.  Use of an excessively large capacitor between the transmit traces and/or excessive capacitance 
from the magnetics’ transmit center-tap (on the Intel 82562ET component’s side of the 
magnetics) to ground
. The use of capacitors with capacitances of more than a few pF in either of 
these locations can slow the 100 Mbps rise and fall time to such a degree that they fail the IEEE rise 
time and fall time specs, will cause the return loss to fail at higher frequencies, and will degrade the 
transmit BER performance. Caution is required if a cap is put in either of these locations. If a cap is 
used, it almost certainly should have a capacitance below 22 pF. (6 pF to 12 pF values have been 
used in past designs with reasonably good success.) Unless there is some overshoot in the 100 Mbps 
mode, these caps are unnecessary. 
Note:  It is important to keep the two traces within a differential pair close to each other, which increases their 
immunity to crosstalk and other sources of common-mode noise. Keeping them close means lower 
emissions (i.e., FCC compliance) from the transmit traces as well as an improved receive BER for the 
receive traces. Close should be considered to be less than 0.030 inches between the two traces within a 
differential pair. 0.007 inches trace-to-trace spacing is recommended.