Intel 820E Benutzerhandbuch

Seite von 239
Intel
®
 820E Chipset 
 
 
 
 
R
 
144  
Design 
Guide 
The following two tables were derived assuming the following: 
• 
CLK
SKEW
 = 0.2 ns 
Note: This assumes that clock driver pin-to-pin skew is reduced to 50 ps by tying two host clock 
outputs together (“ganging”) at the clock driver output pins, and the PCB clock routing skew is 
150 ps. The system timing budget must assume 0.175 ns of clock driver skew if outputs are not tied 
together and a clock driver that meets the CK98 clock driver specification is being used. 
• 
CLK
JITTER
 = 0.250 ns 
Some clock driver components may not support ganging the outputs. Be sure to verify with your clock 
component vendor before ganging the outputs. See the appropriate Intel 820E chipset documentation for 
details regarding the clock skew and jitter specifications. Refer to Section 2.7.2 and Chapter 4 for host 
clock routing details. 
Table 52. Example T
FLT_MAX
 Calculations for 133 MHz Bus
1
 
Driver Receiver Clk 
Period
2
 
T
CO_MAX
 
T
SU_MIN
 Clk
SKEW
 Clk
JITTER
 
M
ADJ
 Recommended 
T
FLT_MAX
3
  
Processor
4
 Processor
4
 
7.50 2.7 1.20 0.20 0.250 
0.40  2.75 
Processor
4
 Intel
®
 82820 
MCH 
7.50 2.7 2.27 0.20 0.250 
0.40  1.68 
82820 MCH  Processor
4
 
7.50 3.63 1.20 0.20 0.25 
0.40  1.82 
NOTES: 
 
1.  All times in nanoseconds. 
2.  BCLK period = 7.50 ns @ 133.33 MHz 
3.  The flight times in this column include margin to account for the following phenomena that Intel has observed 
when multiple bits are switching simultaneously. These multi-bit effects can adversely affect flight time and 
signal quality and are sometimes not accounted for in simulation. Accordingly, maximum flight times depend on 
the baseboard design and additional adjustment factors or margins are recommended. 
          a. SSO push-out or pull-in. 
          b. Rising-edge or falling-edge rate degradation at the receiver caused by inductance in the current return 
              path, requiring extrapolation that causes additional delay. 
          c. Crosstalk on the PCB and internal to the package can cause variation in the signals. 
Additional effects may not necessarily be covered by the multi-bit adjustment factor and should be budgeted as 
appropriate to the baseboard design. Examples include: 
          a. Effective board propagation constant (SEFF), which is a function of: 
                – Dielectric constant (
ε
r
) of the PCB material 
                – Type of trace connecting the components (stripline or microstrip) 
                 – Length of the trace and load of components on trace (Note that the board propagation constant 
                    multiplied by the trace length is a component of the flight time, but not necessarily equal to the 
                    flight time.) 
4.  Processor values specified in this table are examples only. Refer to the appropriate processor datasheet for the 
specification values.