Intel X3480 BV80605002505AH Data Sheet

Product codes
BV80605002505AH
Page of 102
Land Listing and Signal Descriptions
Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
71
IGNNE#
Input
IGNNE# (Ignore Numeric Error) is asserted to the processor to ignore 
a numeric error and continue to execute noncontrol floating-point 
instructions. If IGNNE# is de-asserted, the processor generates an 
exception on a noncontrol floating-point instruction if a previous 
floating-point instruction caused an error. IGNNE# has no effect when 
the NE bit in control register 0 (CR0) is set.
IGNNE# is an asynchronous signal. However, to ensure recognition of 
this signal following an Input/Output write instruction, it must be valid 
along with the TRDY# assertion of the corresponding Input/Output 
Write bus transaction.
INIT#
Input
INIT# (Initialization), when asserted, resets integer registers inside 
the processor without affecting its internal caches or floating-point 
registers. The processor then begins execution at the power-on Reset 
vector configured during power-on configuration. The processor 
continues to handle snoop requests during INIT# assertion. INIT# is 
an asynchronous signal and must connect the appropriate pins/lands 
of all processor FSB agents.
ITP_CLK[1:0]
Input
ITP_CLK[1:0] are copies of BCLK that are used only in processor 
systems where no debug port is implemented on the system board. 
ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port 
implemented on an interposer. If a debug port is implemented in the 
system, ITP_CLK[1:0] are no connects in the system. These are not 
processor signals.
LINT[1:0]
Input
LINT[1:0] (Local APIC Interrupt) must connect the appropriate 
pins/lands of all APIC Bus agents. When the APIC is disabled, the 
LINT0 signal becomes INTR, a maskable interrupt request signal, and 
LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are 
backward compatible with the signals of those names on the Pentium 
processor. Both signals are asynchronous.
Both of these signals must be software configured via BIOS 
programming of the APIC register space to be used either as 
NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after 
Reset, operation of these signals as LINT[1:0] is the default 
configuration.
LOCK#
Input/Output
LOCK# indicates to the system that a transaction must occur 
atomically. This signal must connect the appropriate pins/lands of all 
processor FSB agents. For a locked sequence of transactions, LOCK# 
is asserted from the beginning of the first transaction to the end of the 
last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of 
the processor FSB, it will wait until it observes LOCK# de-asserted. 
This enables symmetric agents to retain ownership of the processor 
FSB throughout the bus locked operation and ensure the atomicity of 
lock.
MSID[1:0]
Output
These signals indicate the Market Segment for the processor. Refer to 
 for additional information. 
PECI
Input/Output
PECI is a proprietary one-wire bus interface. See 
 for 
details.
PROCHOT#
Input/Output
As an output, PROCHOT# (Processor Hot) will go active when the 
processor temperature monitoring sensor detects that the processor 
has reached its maximum safe operating temperature. This indicates 
that the processor Thermal Control Circuit (TCC) has been activated, if 
enabled. As an input, assertion of PROCHOT# by the system will 
activate the TCC, if enabled. The TCC will remain active until the 
system de-asserts PROCHOT#. See 
 for more details.
PWRGOOD
Input
PWRGOOD (Power Good) is a processor input. The processor requires 
this signal to be a clean indication that the clocks and power supplies 
are stable and within their specifications. ‘Clean’ implies that the 
signal will remain low (capable of sinking leakage current), without 
glitches, from the time that the power supplies are turned on until 
they come within specification. The signal must then transition 
monotonically to a high state.  PWRGOOD can be driven inactive at 
any time, but clocks and power must again be stable before a 
subsequent rising edge of PWRGOOD. 
The PWRGOOD signal must be supplied to the processor; it is used to 
protect internal circuits against voltage sequencing issues. It should 
be driven high throughout boundary scan operation.
Table 4-3.
Signal Description  (Sheet 4 of 7)
Name
Type
Description