Intel LF80550KF0604M Data Sheet

Page of 128
Thermal Specifications
78
Dual-Core Intel® Xeon® Processor 7100 Series Datasheet
With a thermal solution designed to meet the thermal profile, it is anticipated that the 
TCC would only be activated for very short periods of time when running the most 
power intensive applications. The processor performance impact due to these brief 
periods of TCC activation is expected to be so minor that it would be immeasurable. A 
thermal solution that is significantly under-designed may not be capable of cooling the 
processor even when the TCC is active continuously. Refer to the Dual-Core Intel® 
Xeon® Processor 7100 Series Thermal/Mechanical Design Guidelines
 for information on 
designing a thermal solution.
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory 
configured and cannot be modified. The Thermal Monitor does not require any 
additional hardware, software drivers, or interrupt handling routines.
6.2.2
Thermal Monitor 2
The Dual-Core Intel Xeon processor 7100 series also supports an additional power 
reduction capability known as Thermal Monitor 2 (TM2). This mechanism provides an 
efficient means for limiting the processor temperature by reducing the power 
consumption within the processor. The Thermal Monitor (or Thermal Monitor 2) feature 
must be enabled for the processor to be operating within specifications.
When Thermal Monitor 2 is enabled and a high temperature situation is detected, the 
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust 
its operating frequency (via the bus multiplier) and input voltage (via the VID signals). 
This combination of reduced frequency and VID results in a decrease to the processor 
power consumption.
A processor enabled for Thermal Monitor 2 includes two operating points, each 
consisting of a specific operating frequency and voltage. The first operating point 
represents the normal operating condition for the processor. Under this condition, the 
core-frequency-to-system-bus multiplier utilized by the processor is that contained in 
the IA32_FLEX_BRVID_SEL MSR and the VID is that specified in 
. These 
parameters represent normal system operation.
The second point consists of both a lower operating frequency and voltage. When the 
TCC is activated, the processor automatically transitions to the new frequency. This 
transition occurs very rapidly (on the order of 5 microseconds). During the frequency 
transition, the processor is unable to service any bus requests, and consequently, all 
bus traffic is blocked. Edge-triggered interrupts will be latched and kept pending until 
the processor resumes operation at the new frequency.
Once the new operating frequency is engaged, the processor will transition to the new 
core operating voltage by issuing a new VID code to the voltage regulator. The voltage 
regulator must support dynamic VID steps in order to support Thermal Monitor 2. 
During the voltage change, it will be necessary to transition through multiple VID codes 
to reach the target operating voltage. Each step will be one VID table entry (see 
). The processor continues to execute instructions during the voltage 
transition. Operation at the lower voltage reduces the power consumption of the 
processor.
A small amount of hysteresis has been included to prevent rapid active/inactive 
transitions of the TCC when the processor temperature is near its maximum operating 
temperature. Once the temperature has dropped below the maximum operating 
temperature, and the hysteresis timer has expired, the operating frequency and 
voltage transition back to the normal system operating point. Transition of the VID code 
will occur first, in order to ensure proper operation once the processor reaches its 
normal operating frequency. Refer to 
 for an illustration of this ordering.