Intel i3-4360T CM8064601481958 User Manual

Product codes
CM8064601481958
Page of 125
Immediate Transition to Combined TM1 and TM2
When the TCC is activated, the processor will sequentially step down the ratio
multipliers and VIDs in an attempt to reduce the silicon temperature. If the
temperature continues to increase and exceeds the TCC activation temperature by
approximately 5 °C before the lowest ratio/VID combination has been reached, the
processor will immediately transition to the combined TM1/TM2 condition. The
processor remains in this state until the temperature has dropped below the TCC
activation point. Once below the TCC activation temperature, TM1 will be discontinued
and TM2 will be exited by stepping up to the appropriate ratio/VID state.
Critical Temperature Flag
If TM2 is unable to reduce the processor temperature, then TM1 will be also be
activated. TM1 and TM2 will then work together to reduce power dissipation and
temperature. It is expected that only a catastrophic thermal solution failure would
create a situation where both TM1 and TM2 are active.
If TM1 and TM2 have both been active for greater than 20 ms and the processor
temperature has not dropped below the TCC activation point, the Critical Temperature
Flag in the IA32_THERM_STATUS MSR will be set. This flag is an indicator of a
catastrophic thermal solution failure and that the processor cannot reduce its
temperature. Unless immediate action is taken to resolve the failure, the processor
will probably reach the Thermtrip temperature (see 
 on page 91)
within a short time. To prevent possible permanent silicon damage, Intel recommends
removing power from the processor within ½ second of the Critical Temperature Flag
being set.
PROCHOT# Signal
An external signal, PROCHOT# (processor hot), is asserted when the processor core
temperature has exceeded its specification. If Adaptive Thermal Monitor is enabled (it
must be enabled for the processor to be operating within specification), the TCC will
be active when PROCHOT# is asserted.
The processor can be configured to generate an interrupt upon the assertion or de-
assertion of PROCHOT#.
By default, the PROCHOT# signal is set to bi-directional. However, it is recommended
to configure the signal as an input only. When configured as an input or bi-directional
signal, PROCHOT# can be used for thermally protecting other platform components
should they overheat as well. When PROCHOT# is driven by an external device:
The package will immediately transition to the minimum operation points (voltage
and frequency) supported by the processor and graphics cores. This is contrary to
the internally-generated Adaptive Thermal Monitor response.
Clock modulation is not activated.
The TCC will remain active until the system de-asserts PROCHOT#. The processor can
be configured to generate an interrupt upon assertion and de-assertion of the
PROCHOT# signal. Refer to the appropriate Platform Thermal Mechanical Design
Guidelines (see Related Doucments section) for details on implementing the bi-
directional PROCHOT# feature.
Note: 
Toggling PROCHOT# more than once in 1.5 ms period will result in constant Pn state
of the processor.
Processor—Thermal Management
Desktop 4th Generation Intel
®
 Core
 Processor Family, Desktop Intel
®
 Pentium
®
 Processor Family, and Desktop Intel
®
 Celeron
®
Processor Family
Datasheet – Volume 1 of 2
July 2014
80
Order No.: 328897-009