Microchip Technology MCU PIC PIC18F87K22-I/PTRSL TQFP-80 MCP PIC18F87K22-I/PTRSL Data Sheet

Product codes
PIC18F87K22-I/PTRSL
Page of 550
PIC18F87K22 FAMILY
DS39960D-page 296
 2009-2011 Microchip Technology Inc.
21.4.2
OPERATION
The MSSP module functions are enabled by setting the
MSSP Enable bit, SSPEN (SSPxCON1<5>).
The SSPxCON1 register allows control of the I
2
C
operation. Four mode selection bits (SSPxCON1<3:0>)
allow one of the following I
2
C modes to be selected:
• I
2
C Master mode, clock
• I
2
C Slave mode (7-bit address)
• I
2
C Slave mode (10-bit address)
• I
2
C Slave mode (7-bit address) with Start and 
Stop bit interrupts enabled
• I
2
C Slave mode (10-bit address) with Start and 
Stop bit interrupts enabled
• I
2
C Firmware Controlled Master mode, slave is 
Idle
Selection of any I
2
C mode with the SSPEN bit set
forces the SCLx and SDAx pins to be open-drain,
provided these pins are programmed as inputs by
setting the appropriate TRISC or TRISD bits. To ensure
proper operation of the module, pull-up resistors must
be provided externally to the SCLx and SDAx pins.
21.4.3
SLAVE MODE
In Slave mode, the SCLx and SDAx pins must be
configured as inputs (TRISC<4:3> set). The MSSP
module will override the input state with the output data
when required (slave-transmitter).
The I
2
C Slave mode hardware will always generate an
interrupt on an address match. Address masking will
allow the hardware to generate an interrupt for more
than one address (up to 31 in 7-bit addressing and up
to 63 in 10-bit addressing). Through the mode select
bits, the user can also choose to interrupt on Start and
Stop bits.
When an address is matched, or the data transfer after
an address match is received, the hardware auto-
matically will generate the Acknowledge (ACK) pulse
and load the SSPxBUF register with the received value
currently in the SSPxSR register.
Any combination of the following conditions will cause
the MSSP module not to give this ACK pulse:
• The Buffer Full bit, BF (SSPxSTAT<0>), was set 
before the transfer was received.
• The overflow bit, SSPOV (SSPxCON1<6>), was 
set before the transfer was received.
In this case, the SSPxSR register value is not loaded
into the SSPxBUF, but bit, SSPxIF, is set. The BF bit is
cleared by reading the SSPxBUF register, while bit,
SSPOV, is cleared through software.
The SCLx clock input must have a minimum high and
low for proper operation. The high and low times of the
I
2
C specification, as well as the requirement of the
MSSP module, are shown in timing Parameter 100 and
Parameter 101.
21.4.3.1
Addressing
Once the MSSP module has been enabled, it waits for
a Start condition to occur. Following the Start condition,
the 8 bits are shifted into the SSPxSR register. All
incoming bits are sampled with the rising edge of the
clock (SCLx) line. The value of register, SSPxSR<7:1>,
is compared to the value of the SSPxADD register. The
address is compared on the falling edge of the eighth
clock (SCLx) pulse. If the addresses match and the BF
and SSPOV bits are clear, the following events occur:
1.
The SSPxSR register value is loaded into the
SSPxBUF register.
2.
The Buffer Full bit, BF, is set.
3.
An ACK pulse is generated.
4.
The MSSP Interrupt Flag bit, SSPxIF, is set (and
an interrupt is generated, if enabled) on the
falling edge of the ninth SCLx pulse.
In 10-Bit Addressing mode, two address bytes need to
be received by the slave. The five Most Significant bits
(MSbs) of the first address byte specify if this is a 10-bit
address. The R/W (SSPxSTAT<2>) bit must specify a
write so the slave device will receive the second
address byte. For a 10-bit address, the first byte would
equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the
two MSbs of the address. The sequence of events for
10-bit addressing is as follows, with Steps 7 through 9
for the slave-transmitter:
1.
Receive first (high) byte of address (bits,
SSPxIF, BF and UA, are set on address match).
2.
Update the SSPxADD register with second (low)
byte of address (clears bit, UA, and releases the
SCLx line).
3.
Read the SSPxBUF register (clears bit, BF) and
clear flag bit, SSPxIF.
4.
Receive second (low) byte of address (bits,
SSPxIF, BF and UA, are set).
5.
Update the SSPxADD register with the first
(high) byte of address. If match releases SCLx
line, this will clear bit, UA.
6.
Read the SSPxBUF register (clears bit, BF) and
clear flag bit, SSPxIF.
7.
Receive Repeated Start condition.
8.
Receive first (high) byte of address (bits,
SSPxIF and BF, are set).
9.
Read the SSPxBUF register (clears bit, BF) and
clear flag bit, SSPxIF.