Microchip Technology MA330024 Data Sheet

Page of 462
 2009-2014 Microchip Technology Inc.
DS7000591F-page 33
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610
3.0
CPU
The dsPIC33FJ32GS406/606/608/610 and
dsPIC33FJ64GS406/606/608/610 CPU module has a
16-bit (data) modified Harvard architecture with an
enhanced instruction set, including significant support
for DSP. The CPU has a 24-bit instruction word with a
variable length opcode field. The Program Counter
(PC) is 23 bits wide and addresses up to 4M x 24 bits
of user program memory space. The actual amount of
program memory implemented varies from device to
device. A single-cycle instruction prefetch mechanism is
used to help maintain throughput and provides
predictable execution. All instructions execute in a single
cycle, with the exception of instructions that change the
program flow, the double-word move (MOV.D) instruction
and the table instructions. Overhead-free program loop
constructs are supported using the DO and REPEAT
instructions, both of which are interruptible at any point.
The dsPIC33FJ32GS406/606/608/610 and
dsPIC33FJ64GS406/606/608/610 devices have six-
teen, 16-bit Working registers in the programmer’s
model. Each of the Working registers can serve as a
data, address or address offset register. The sixteenth
Working register (W15) operates as a Software Stack
Pointer (SSP) for interrupts and calls.
There are two classes of instruction in the
dsPIC33FJ32GS406/606/608/610 and
dsPIC33FJ64GS406/606/608/610 devices: MCU and
DSP. These two instruction classes are seamlessly
integrated into a single CPU. The instruction set includes
many addressing modes and is designed for optimum C
compiler efficiency. For most instructions, the
dsPIC33FJ32GS406/606/608/610 and
dsPIC33FJ64GS406/606/608/610 devices are capable
of executing a data (or program data) memory read, a
Working register (data) read, a data memory write and a
program (instruction) memory read per instruction cycle.
As a result, three parameter instructions can be sup-
ported, allowing A + B = C operations to be executed in a
single cycle.
A block diagram of the CPU is shown in
, and the programmer ’s model for
the dsPIC33FJ32GS406/606/608/610 and
dsPIC33FJ64GS406/606/608/610 is shown in
.
3.1
Data Addressing Overview
The data space can be addressed as 32K words or
64 Kbytes and is split into two blocks, referred to as X
and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The
MCU class of instructions operates solely through
the X memory AGU, which accesses the entire
memory map as one linear data space. Certain DSP
instructions operate through the X and Y AGUs to
support dual operand reads, which splits the data
address space into two parts. The X and Y data space
boundary is device-specific.
Overhead-free circular buffers (Modulo Addressing
mode) are supported in both X and Y address spaces.
The Modulo Addressing removes the software
boundary checking overhead for DSP algorithms.
Furthermore, the X AGU circular addressing can be
used with any of the MCU class of instructions. The X
AGU also supports Bit-Reversed Addressing to greatly
simplify input or output data reordering for radix-2 FFT
algorithms.
The upper 32 Kbytes of the data space memory map
can optionally be mapped into program space at any
16K program word boundary defined by the 8-bit
Program Space Visibility Page (PSVPAG) register. The
program-to-data space mapping feature lets any
instruction access program space as if it were data
space. 
3.2
DSP Engine Overview
The DSP engine features a high-speed, 17-bit by 17-bit
multiplier, a 40-bit ALU, two 40-bit saturating
accumulators and a 40-bit bidirectional barrel shifter.
The barrel shifter is capable of shifting a 40-bit value up
to 16 bits, right or left, in a single cycle. The DSP
instructions operate seamlessly with all other
instructions and have been designed for optimal real-
time performance. The MAC instruction and other
associated instructions can concurrently fetch two data
operands from memory while multiplying two W
registers and accumulating and optionally saturating
the result in the same cycle. This instruction
functionality requires that the RAM data space be split
for these instructions and linear for all others. Data
space partitioning is achieved in a transparent and
flexible manner through dedicating certain Working
registers to each address space.
Note 1: This data sheet summarizes the features
of the dsPIC33FJ32GS406/606/608/610
and dsPIC33FJ64GS406/606/608/610
families of devices. It is not intended to be
a comprehensive reference source. To
complement the information in this data
sheet, refer to “CPU” (DS70204) in the
dsPIC33/PIC24 Family Reference
Manual”
, which is available from the
Microchip web site (
www.microchip.com
).
The information in this data sheet
supersedes the information in the FRM.
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.