Intel Pentium D 940 HH80553PG0884M User Manual

Product codes
HH80553PG0884M
Page of 112
Datasheet
87
Thermal Specifications and Design Considerations
As a bi-directional signal, PROCHOT# allows for some protection of various components 
from over-temperature situations. The PROCHOT# signal is bi-directional in that it can 
either signal when the processor (either core) has reached its maximum operating 
temperature or be driven from an external source to activate the TCC. The ability to 
activate the TCC via PROCHOT# can provide a means for thermal protection of system 
components.
Bi-directional PROCHOT# (if enabled) can allow VR thermal designs to target maximum 
sustained current instead of maximum current. Systems should still provide proper 
cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in case of 
system cooling failure. The system thermal design should allow the power delivery 
circuitry to operate within its temperature specification even while the processor is 
operating at its Thermal Design Power. With a properly designed and characterized 
thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted 
for very short periods of time when running the most power intensive applications. An 
under-designed thermal solution that is not able to prevent excessive assertion of 
PROCHOT# in the anticipated ambient environment may cause a noticeable 
performance loss. Refer to the Voltage Regulator-Down (VRD) 10.1 Design Guide for 
Desktop Socket 775 for details on implementing the bi-directional PROCHOT# feature.
5.2.4
FORCEPR# Signal
The FORCEPR# (force power reduction) input can be used by the platform to cause the 
processor (both cores) to activate the TCC. If the Thermal Monitor is enabled, the TCC 
will be activated upon the assertion of the FORCEPR# signal. The TCC will remain active 
until the system deasserts FORCEPR#. FORCEPR# is an asynchronous input.
FORCEPR# can be used to thermally protect other system components. To use the VR 
as an example, when the FORCEPR# pin is asserted, the TCC circuit in the processor 
(both cores) will activate, reducing the current consumption of the processor and the 
corresponding temperature of the VR. 
Note that assertion of the FORCEPR# does not automatically assert PROCHOT#. As 
mentioned previously, the PROCHOT# signal is asserted when a high temperature 
situation is detected. A minimum pulse width of 500 µs is recommend when the 
FORCEPR# is asserted by the system. Sustained activation of the FORCEPR# pin may 
cause noticeable platform performance degradation.
One application is the thermal protection of voltage regulators (VR). System designers 
can create a circuit to monitor the VR temperature and activate the TCC when the 
temperature limit of the VR is reached. By asserting FORCEPR# (pulled-low) and 
activating the TCC, the VR can cool down as a result of reduced processor power 
consumption. FORCEPR# can allow VR thermal designs to target maximum sustained 
current instead of maximum current. Systems should still provide proper cooling for the 
VR, and rely on FORCEPR# only as a backup in case of system cooling failure. The 
system thermal design should allow the power delivery circuitry to operate within its 
temperature specification even while the processor is operating at its Thermal Design 
Power. With a properly designed and characterized thermal solution, it is anticipated 
that FORCEPR# would only be asserted for very short periods of time when running the 
most power intensive applications. An under-designed thermal solution that is not able 
to prevent excessive assertion of FORCEPR# in the anticipated ambient environment 
may cause a noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 
10.1 Design Guide for Desktop Socket 775 for details on implementing the FORCEPR# 
feature.