National Instruments 370753C-01 Manual De Usuario

Descargar
Página de 157
Chapter 5
Classical Feedback Analysis
5-20
ni.com
-0.52263 
0.00336213 + 3.75217 j
0.00336213 - 3.75217 j
-11.4841 
Two of the poles of the closed-loop system are now unstable.
Linear Systems and Power Spectral Density
A key characteristic of the linear, time-invariant systems represented in 
Xmath is that the transfer function between a system input and a system 
output is just the Fourier transform of the response at that output to a delta 
impulse at that input. The power spectral density of a time series is defined 
as the Fourier transform of the autocorrelation function of the series. 
Given these two concepts, you can obtain the power spectral density of the 
output of a linear, time-invariant system just by knowing the power spectral 
density of the input and the system’s transfer function [Leo89], [GrD86]. 
Representing the transfer function by H(q) and the power spectral densities 
of the input and output as S
U
(q) and S
Y
(q), respectively:
You also can obtain the cross-power spectral densities:
These results indicate that you can shape the spectrum of a linear system’s 
output by using an input with an appropriate spectrum. Alternatively, you 
can choose a system to give you the output spectrum you want, given a 
fixed set of input data. When you use linear systems in transfer-function 
form for such applications, you generally refer to them as filters rather than 
systems.
psd( )
[Ypsd,Yspec] = psd(Sys,{Uspec})
The 
psd( )
 function computes the power spectral density and 
cross-spectral density of a system’s outputs as a function of frequency, 
given the frequency-dependent input power spectral density matrices. The 
input parameter 
Uspec
 is a PDM where domain contains the frequency 
S
Y
q
( )
H q
( )
2
S
U
q
( )
=
S
YU
q
( )
H q
( )S
U
q
( )
=
S
UY
q
( )
H∗ q
( )S
U
q
( )
=