Cypress CY14B108N Manual De Usuario

Descargar
Página de 24
PRELIMINARY
CY14B108L, CY14B108N
Document #: 001-45523 Rev. *B
Page 4 of 24
Device Operation
The CY14B108L/CY14B108N nvSRAM is made up of two
functional components paired in the same physical cell. They are
a SRAM memory cell and a nonvolatile QuantumTrap cell. The
SRAM memory cell operates as a standard fast static RAM. Data
in the SRAM is transferred to the nonvolatile cell (the STORE
operation), or from the nonvolatile cell to the SRAM (the RECALL
operation). Using this unique architecture, all cells are stored and
recalled in parallel. During the STORE and RECALL operations,
SRAM read and write operations are inhibited. The
CY14B108L/CY14B108N supports infinite reads and writes
similar to a typical SRAM. In addition, it provides infinite RECALL
operations from the nonvolatile cells and up to 200K STORE
operations. See the
 
 
for a complete description of read and write modes.
SRAM Read
The CY14B108L/CY14B108N performs a read cycle when CE
and OE are LOW and WE and HSB are HIGH. The address
specified on pins A
0-19
 
or A
0-18
 determines which of the
1,048,576 data bytes or 524,288 words of 16 bits each are
accessed. Byte enables (BHE, BLE) determine which bytes are
enabled to the output, in the case of 16-bit words. When the read
is initiated by an address transition, the outputs are valid after a
delay of t
AA
 (read cycle 1). If the read is initiated by CE or OE,
the outputs are valid at t
ACE
 or at t
DOE
, whichever is later (read
cycle 2). The data output repeatedly responds to address
changes within the t
AA
 access time without the need for transi-
tions on any control input pins. This remains valid until another
address change or until CE or OE is brought HIGH, or WE or
HSB is brought LOW.
SRAM Write
A write cycle is performed when CE and WE are LOW and HSB
is HIGH. The address inputs must be stable before entering the
write cycle and must remain stable until CE or WE goes HIGH at
the end of the cycle. The data on the common I/O pins DQ
0–15
are written into the memory if the data is valid t
SD
 before the end
of a WE controlled write or before the end of an CE controlled
write. The Byte Enable inputs (BHE, BLE) determine which bytes
are written, in the case of 16-bit words. Keep OE HIGH during
the entire write cycle to avoid data bus contention on common
I/O lines. If OE is left LOW, internal circuitry turns off the output
buffers t
HZWE 
after WE goes LOW.
AutoStore Operation
The CY14B108L/CY14B108N stores data to the nvSRAM using
one of the following three storage operations: Hardware STORE
activated by HSB; Software STORE activated by an address
sequence; AutoStore on device power down. The AutoStore
operation is a unique feature of QuantumTrap technology and is
enabled by default on the CY14B108L/CY14B108N.
During a normal operation, the device draws current from V
CC
 to
charge a capacitor connected to the V
CAP
 pin. This stored
charge is used by the chip to perform a single STORE operation.
If the voltage on the V
CC
 pin drops below V
SWITCH
, the part
automatically disconnects the V
CAP
 pin from V
CC
. A STORE
operation is initiated with power provided by the V
CAP
 capacitor.
shows the proper connection of the storage capacitor
(V
CAP
) for automatic STORE operation. Refer to 
 on page 8 for the size of V
CAP
. The voltage on
the V
CAP
 pin is driven to V
CC 
by a regulator on the chip. A pull
up should be placed on WE to hold it inactive during power up.
This pull up is effective only if the WE signal is tri-state during
power up. Many MPUs tri-state their controls on power up. This
should be verified when using the pull up. When the nvSRAM
comes out of power-on-recall, the MPU must be active or the WE
held inactive until the MPU comes out of reset.
To reduce unnecessary nonvolatile STOREs, AutoStore and
Hardware STORE operations are ignored unless at least one
write operation has taken place since the most recent STORE or
RECALL cycle. Software initiated STORE cycles are performed
regardless of whether a write operation has taken place. The
HSB signal is monitored by the system to detect if an AutoStore
cycle is in progress.
Figure 3.  AutoStore Mode
Hardware STORE Operation
The CY14B108L/CY14B108N provides the HSB
 
pin to control
and acknowledge the STORE operations. Use the HSB pin to
request a Hardware STORE cycle. When the HSB pin is driven
LOW, the CY14B108L/CY14B108N conditionally initiates a
STORE operation after t
DELAY
. An actual STORE cycle only
begins if a write to the SRAM has taken place since the last
STORE or RECALL cycle. The HSB pin also acts as an open
drain driver that is internally driven LOW to indicate a busy
condition when the STORE (initiated by any means) is in
progress.
SRAM read and write operations that are in progress when HSB
is driven LOW by any means are given time to complete before
the STORE operation is initiated. After HSB goes LOW, the
CY14B108L/CY14B108N continues SRAM operations for
t
DELAY
. If a write is in progress when HSB is pulled LOW it is
enabled a time, t
DELAY
 to complete. However, any SRAM write
cycles requested after HSB goes LOW are inhibited until HSB
returns HIGH. In case the write latch is not set, HSB is not driven
LOW by the CY14B108L/CY14B108N. But any SRAM read and
write cycles are inhibited until HSB is returned HIGH by MPU or
other external source.
During any STORE operation, regardless of how it is initiated,
the CY14B108L/CY14B108N continues to drive the HSB pin
LOW, releasing it only when the STORE is complete. Once the
0.1uF
Vcc
10
kOhm
V
CAP
Vcc
WE
V
CAP
V
SS