Analog Devices ADP1879 Evaluation Board ADP1879-1.0-EVALZ ADP1879-1.0-EVALZ Hoja De Datos

Los códigos de productos
ADP1879-1.0-EVALZ
Descargar
Página de 40
ADP1878/ADP1879 
Data
 Sheet
 
Rev. B | Page 22 of 40 
 
Figure 76. 10 mV Offset to Ensure Prevention of Negative Inductor Current 
The system remains in idle mode until the output voltage drops 
below regulation. Next, a PWM pulse is produced, turning on the 
high-side MOSFET to maintain system regulation. Th
does not have an internal clock; it switches purely as a hysteretic 
controller, as described in this section. 
TIMER OPERATION 
Th
 employ a constant on-time architecture, 
which provides a variety of benefits, including improved load 
and line transient response when compared with a constant 
(fixed) frequency current-mode control loop of comparable 
loop design. The constant on-time timer, or t
ON
 timer, senses 
the high-side input voltage (V
IN
) and the output voltage (V
OUT
using SW waveform information to produce an adjustable one 
shot PWM pulse. The pulse varies the on-time of the high-side 
MOSFET in response to dynamic changes in input voltage, output 
voltage, and load current conditions to maintain output regula-
tion. The timer generates an on-time (t
ON
) pulse that is inversely 
proportional to V
IN
.  
 
where K is a constant that is trimmed using an RC timer product 
for the 300 kHz, 600 kHz, and 1.0 MHz frequency options. 
 
Figure 77. Constant On-Time Time 
The constant on-time (t
ON
) is not strictly constant because it 
varies with V
IN
 and V
OUT
. However, this variation occurs in such 
a way as to keep the switching frequency virtually independent 
of V
IN
 and V
OUT
.  
The t
ON
 timer uses a feedforward technique that, when applied 
to the constant on-time control loop, makes it a pseudo fixed 
frequency to a first-order approximation.  
Second-order effects, such as dc losses in the external power 
MOSFETs (see the Efficiency Consideration section), cause some 
variation in frequency vs. load current and line voltage. These 
effects are shown in Figure 23 to Figure 34. The variations in 
frequency are much reduced compared with the variations 
generated if the feedforward technique is not used. 
The feedforward technique establishes the following relationship: 
1
 
where f
SW
 is the controller switching frequency (300 kHz, 
600 kHz, and 1.0 MHz). 
The t
ON
 timer senses V
IN
 and V
OUT
 to minimize frequency 
variation as previously explained. This provides pseudo fixed 
frequency as explained in the Pseudo Fixed Frequency section. 
To allow headroom for V
IN
 and V
OUT
 sensing, adhere to the 
following equations: 
V
REG
 ≥ V
IN
/8 + 1.5 
V
REG
 ≥ V
OUT
/4 
For typical applications where V
REG
 is 5 V, these equations are 
not relevant; however, for lower V
REG
 inputs, care may be required. 
PSEUDO FIXED FREQUENCY 
 employ a constant on-time control 
scheme. During steady state operation, the switching frequency 
stays relatively constant, or pseudo fixed. This is due to the one 
shot t
ON
 timer that produces a high-side PWM pulse with a 
fixed duration, given that external conditions such as input 
voltage, output voltage, and load current are also at steady state. 
During load transients, the frequency momentarily changes for 
the duration of the transient event so that the output comes 
back within regulation quicker than if the frequency were fixed, 
or if it were to remain unchanged. After the transient event is 
complete, the frequency returns to a pseudo fixed value.  
To illustrate this feature more clearly, this section describes one 
such load transient event—a positive load step—in detail. During 
load transient events, the high-side driver output pulse width 
stays relatively consistent from cycle to cycle; however, the off 
time (DRVL on time) dynamically adjusts according to the 
instantaneous changes in the external conditions mentioned.  
When a positive load step occurs, the error amplifier (out of phase 
with the output, V
OUT
) produces new voltage information at its 
output (COMP). In addition, the current sense amplifier senses 
new inductor current information during this positive load 
transient event. The output voltage reaction of the error amplifier is 
compared with the new inductor current information that sets 
the start of the next switching cycle. Because current information 
is produced from valley current sensing, it is sensed at the down 
ramp of the inductor current, whereas the voltage loop information 
HS AND LS
IN IDLE MODE
10mV = R
ON
 × I
LOAD
ZERO-CROSS COMPARATOR
DETECTS 10mV OFFSET AND
TURNS OFF LS
SW
LS
0A
I
LOAD
t
ON
ANOTHER
t
ON
 EDGE IS
TRIGGERED WHEN V
OUT
FALLS BELOW REGULATION
09
44
1-
0
76
C
R
(TRIMMED)
VREG
t
ON
V
IN
I
SW
INFORMATION
09
44
1-
0
77