Analog Devices ADP1879 Evaluation Board ADP1879-1.0-EVALZ ADP1879-1.0-EVALZ Hoja De Datos

Los códigos de productos
ADP1879-1.0-EVALZ
Descargar
Página de 40
Data
 Sheet
 
ADP1878/ADP1879
 
Rev. B | Page 21 of 40 
 
Figure 73. Idle Mode Entry Sequence Due to Current-Limit Violation 
HICCUP MODE DURING SHORT CIRCUIT 
A current-limit violation occurs when the current across the 
source and drain of the low-side MOSFET exceeds the current-
limit setpoint. When 32 current-limit violations are detected, 
the controller enters idle mode and turns off the MOSFETs for 
6 ms, allowing the converter to cool down. Then, the controller 
reestablishes soft start and begins to cause the output to ramp 
up again (see Figure 73). While the output ramps up, the current 
sense amplifier output is monitored to determine if the violation is 
still present. If it is still present, the idle event occurs again, followed 
by the full chip, power-down sequence. This cycle continues 
until the violation no longer exists. If the violation disappears, 
the converter is allowed to switch normally, maintaining 
regulation. 
SYNCHRONOUS RECTIFIER 
Th
 employ internal MOSFET drivers for  
the external high- and low-side MOSFETs. The low-side 
synchronous rectifier not only improves overall conduction 
efficiency, but it also ensures proper charging of the bootstrap 
capacitor located at the high-side driver input. This is beneficial 
during startup to provide sufficient drive signal to the external 
high-side MOSFET and to attain fast turn-on response, which is 
essential for minimizing switching losses. The integrated high- 
and low-side MOSFET drivers operate in complementary 
fashion with built-in anti cross conduction circuitry to prevent 
unwanted shoot through current that may potentially damage the 
MOSFETs or reduce efficiency because of excessive power loss.  
ADP1879 POWER SAVING MODE (PSM) 
A power saving mode is provided in th
operates in the discontinuous conduction mode (DCM) and 
pulse skips at light to medium load currents. The controller outputs 
pulses as necessary to maintain output regulation. Unlike the 
continuous conduction mode (CCM), DCM operation prevents 
negative current, thus allowing improved system efficiency at 
light loads. Current in the reverse direction through this pathway, 
however, results in power dissipation and, therefore, a decrease in 
efficiency. 
 
Figure 74. Discontinuous Mode of Operation (DCM) 
To minimize the chance of negative inductor current buildup, 
an on-board zero-cross comparator turns off all high- and low-
side switching activities when the inductor current approaches 
the zero current line, causing the system to enter idle mode, 
where the high- and low-side MOSFETs are turned off. To ensure 
idle mode entry, a 10 mV offset, connected in series at the SW 
node, is implemented (see Figure 75).  
 
Figure 75. Zero-Cross Comparator with 10 mV of Offset 
As soon as the forward current through the low-side MOSFET 
decreases to a level where  
10 mV = I
Q2
 × R
ON(Q2)
 
the zero-cross comparator (or I
REV
 comparator) emits a signal to 
turn off the low-side MOSFET. From this point, the slope of the 
inductor current ramping down becomes steeper (see Figure 76) 
as the body diode of the low-side MOSFET begins to conduct 
current and continues conducting current until the remaining 
energy stored in the inductor has been depleted. 
HS
CLIM
ZERO
CURRENT
REPEATED CURRENT-LIMIT
VIOLATION DETECTED
A PREDETERMINED NUMBER
   OF PULSES IS COUNTED TO
      ALLOW THE CONVERTER
TO COOL DOWN
SOFT START IS
REINITIALIZED TO
MONITOR IF THE
VIOLATION
STILL EXISTS
09
44
1-
07
3
HS
HS AND LS ARE OFF
OR IN IDLE MODE
LS
0A
I
LOAD
AS THE INDUCTOR
CURRENT APPROACHES
ZERO CURRENT, THE STATE
MACHINE TURNS OFF THE
LOWER-SIDE MOSFET.
t
ON
t
OFF
09
441
-07
4
10mV
ZERO-CROSS
COMPARATOR
Q2
LS
SW
I
Q2
094
41-
075