Analog Devices ADP1879 Evaluation Board ADP1879-1.0-EVALZ ADP1879-1.0-EVALZ Hoja De Datos

Los códigos de productos
ADP1879-1.0-EVALZ
Descargar
Página de 40
Data
 Sheet
 
ADP1878/ADP1879
 
Rev. B | Page 27 of 40 
The amount of loss through the body diode of the low-side 
MOSFET during the anti overlap state is given by the following 
expression: 
where: 
t
BODY(LOSS)
 is the body conduction time (refer to Figure 84 for 
dead time periods). 
t
SW
 is the period per switching cycle. 
V
F
 is the forward drop of the body diode during conduction. 
(Refer to the selected external MOSFET data sheet for more 
information about the V
F
 parameter.) 
 
Figure 84. Body Diode Conduction Time vs. Low Voltage Input (V
REG
Inductor Loss 
During normal conduction mode, further power loss is caused 
by the conduction of current through the inductor windings, 
which have dc resistance (DCR). Typically, larger sized inductors 
have smaller DCR values. 
The inductor core loss is a result of the eddy currents generated 
within the core material. These eddy currents are induced by the 
changing flux, which is produced by the current flowing through 
the windings. The amount of inductor core loss depends on the 
core material, the flux swing, the frequency, and the core volume. 
Ferrite inductors have the lowest core losses, whereas powdered iron 
inductors have higher core losses. It is recommended to use shielded 
ferrite core material type inductors with th
for a high current, dc-to-dc switching application to achieve 
minimal loss and negligible electromagnetic interference (EMI). 
 
INPUT CAPACITOR SELECTION 
The goal in selecting an input capacitor is to reduce or minimize 
input voltage ripple and to reduce the high frequency source 
impedance, which is essential for achieving predictable loop 
stability and transient performance.  
The problem with using bulk capacitors, other than their physical 
geometries, is their large equivalent series resistance (ESR) and 
large equivalent series inductance (ESL). Aluminum electrolytic 
capacitors have such high ESR that they cause undesired input 
voltage ripple magnitudes and are generally not effective at high 
switching frequencies.  
If bulk electrolytic capacitors are used, it is recommended to use 
multilayered ceramic capacitors (MLCC) in parallel due to their 
low ESR values. This dramatically reduces the input voltage ripple 
amplitude as long as the MLCCs are mounted directly across the 
drain of the high-side MOSFET and the source terminal of the 
low-side MOSFET (see the Layout Considerations section). 
Improper placement and mounting of these MLCCs may cancel 
their effectiveness due to stray inductance and an increase in 
trace impedance.  
,
,
 
The maximum input voltage ripple and maximum input capacitor 
rms current occur at the end of the duration of 1 − D while the 
high-side MOSFET is in the off state. The input capacitor rms 
current reaches its maximum at time D. When calculating the 
maximum input voltage ripple, account for the ESR of the input 
capacitor as follows: 
V
MAX,RIPPLE
 = V
RIPP
 + (I
LOAD,MAX
 × ESR)  
where: 
V
RIPP
 is usually 1% of the minimum voltage input. 
I
LOAD,MAX
 is the maximum load current. 
ESR is the equivalent series resistance rating of the input capacitor.  
Inserting V
MAX,RIPPLE
 into the charge balance equation to 
calculate the minimum input capacitor requirement gives 
,
,
,
1
 
or 
,
,
4
,
 
where D = 50%. 
THERMAL CONSIDERATIONS 
 are used for dc-to-dc, step down, high 
current applications that have an on-board controller, an on-board 
LDO, and on-board MOSFET drivers. Because applications may 
require up to 20 A of load current and be subjected to high ambient 
temperature, the selection of external high- and low-side MOSFETs 
must be associated with careful thermal consideration to not 
exceed the maximum allowable junction temperature of 125°C. 
To avoid permanent or irreparable damage, if the junction temper-
ature reaches or exceeds 155°C, the part enters thermal shutdown, 
turning off both external MOSFETs, and is not reenabled until 
the junction temperature cools to 140°C (see the On-Board Low 
Dropout (LDO) Regulator s
ection).  
In addition, it is important to consider the thermal impedance 
of the package. Because th
 employ an  
on-board LDO, the ac current (fxCxV) consumed by the internal 
drivers to drive the external MOSFETs, adds another element of 
80
72
64
56
48
40
32
24
16
8
2.7
5.5
4.8
4.1
3.4
B
O
DY D
IO
D
E C
O
NDU
CT
IO
T
IM
E
 (
n
s)
V
REG
 (V)
+125°C
+25°C
–40°C
1MHz
300kHz
09
44
1-
08
4