Analog Devices AD9233 Evaluation Board AD9233-80EBZ AD9233-80EBZ Fiche De Données

Codes de produits
AD9233-80EBZ
Page de 44
AD9233 
 
 
Rev. A | Page 20 of 44 
Treat the clock input as an analog signal in cases where aperture 
jitter may affect the dynamic range of the AD9233. Power 
supplies for clock drivers should be separated from the ADC 
output driver supplies to avoid modulating the clock signal with 
digital noise. The power supplies should also not be shared with 
analog input circuits such as buffers to avoid the clock 
modulating onto the input signal or vice versa. Low jitter, 
crystal-controlled oscillators make the best clock sources.  
If the clock is generated from another type of source (by  
gating, dividing, or other methods), it should be retimed by the 
original clock at the last step.  
Refer to Application Notes 
Aperture Uncertainty and 
ADC System Performance, an
Sampled Systems and 
the Effects of Clock Phase Noise and Jitter for more in-depth 
information about jitter performance as it relates to ADCs.  
POWER DISSIPATION AND STANDBY MODE 
As shown in Figure 52 and Figure 53, the power dissipated by 
the AD9233 is proportional to its sample rate. The digital power 
dissipation is determined primarily by the strength of the digital 
drivers and the load on each output bit. The maximum DRVDD 
current (I
DRVDD
) can be calculated as  
N
f
C
V
I
CLK
LOAD
DRVDD
DRVDD
×
×
×
=
2
 
where N is the number of output bits (12 in the case of the 
AD9233).  
This maximum current occurs when every output bit switches 
on every clock cycle, that is, a full-scale square wave at the 
Nyquist frequency, f
CLK
/2. In practice, the DRVDD current is 
established by the average number of output bits switching, 
which is determined by the sample rate and the characteristics 
of the analog input signal. Reducing the capacitive load 
presented to the output drivers can minimize digital power 
consumption.  
The data used for Figure 52 and Figure 53 is based on the  
same operating conditions as used in the plots in the Typical 
Performance Characteristics s
ection with a 5 pF load on each 
output driver.  
475
325
0
125
CLOCK FREQUENCY (MSPS)
P
O
WE
R
 (
m
W)
450
425
400
375
350
250
0
CU
RRE
NT
 (
m
A)
200
150
100
50
25
50
75
100
IDRVDD
IAVDD
TOTAL POWER
05
49
2-
03
4
 
Figure 52. AD9233-125 Power and Current vs. Clock Frequency, F
IN
 = 30 MHz 
410
250
5
CLOCK FREQUENCY (MSPS)
PO
W
E
R
 (mW
)
200
180
0
CURR
E
NT
 (
m
A)
160
140
120
100
80
60
40
20
30
55
80
105
390
370
350
330
310
290
270
IDRVDD
IAVDD
TOTAL POWER
0
549
2-
0
82
 
Figure 53. AD9233-105 Power and Current vs. Clock Frequency, F
IN
 = 30 MHz 
290
215
0
CLOCK FREQUENCY (MSPS)
P
O
WE
R
 (
m
W)
150
0
CU
RRE
NT
 (
m
A)
120
90
60
30
80
IDRVDD
IAVDD
TOTAL POWER
05
49
2-
0
93
275
260
245
230
20
40
60
 
Figure 54. AD9233-80 Power and Current vs. Clock Frequency, F
IN
 = 30 MHz