GE SX TRANSISTOR CONTROL IC3645SR4U404N2 Manuel D’Utilisation

Page de 74
BASIC OPERATION AND FEATURES 
SX TRANSISTOR CONTROL
 
 
 
Page 4
 
 
January 2000 
Section 1. INTRODUCTION 
 
Section 1.1 Motor Characteristics 
 
The level of sophistication in the controllability of traction 
motors has changed greatly over the past several years. 
Vehicle manufacturers and users are continuing to expect 
more value and flexibility in electric vehicle motor and 
control systems as they are applied today.  In order to 
respond to these market demands, traction system 
designers have been forced to develop new approaches to 
reduce cost and improve functions and features of the 
overall system. Development is being done in a multi-
generational format that allows the market to take 
advantage of today’s technology, while looking forward to 
new advances on the horizon. GE has introduced a second 
generation system using separately excited DC shunt 
wound motors. The separately excited DC motor system 
offers many of the features that are generally found on the 
advanced AC systems.  Historically, most electric vehicles 
have relied have on series motor designs because of their 
ability to produce very high levels of torque at low speeds. 
But, as the demand for high efficiency systems increases, 
i.e., systems that are more closely applied to customers’ 
specific  torque requirements, shunt motors are now often 
being considered over series motors. In most applications, 
by independently controlling the field and armature 
currents in the separately excited motor, the best attributes 
of both the series and the shunt wound motors can be 
combined.   
 
 
NO
 LO
AD
 CU
RR
ENT
FU
LL
LO
AD
 CU
RRE
NT
STA
RTI
NG
 CU
RRE
NT
ARMATURE CURRENT
Figure 1
SPEED
TORQUE
 
 
As shown in from the typical performance curves of Figure 
1, the high torque at low speed characteristic of the series 
motor is evident.   
 
In a shunt motor, the field is connected directly across the 
voltage source and is therefore independent of variations in 
load and armature current. If field strength is held 
constant, the torque developed will vary directly with the 
armature current. If the mechanical load on the motor 
increases, the motor slows down, reducing the back EMF 
(which depends on the speed, as well as the constant field 
strength). The reduced back EMF allows the armature 
current to increase, providing the greater torque needed to 
drive the increased mechanical load. If the mechanical 
load is decreased, the process reverses.  The motor speed 
and the back EMF increase, while the armature current and 
the torque developed decrease. Thus, whenever the load 
changes, the speed changes also, until the motor is again 
in electrical balance. 
 
In a shunt motor, the variation of speed from no load to 
normal full load on level ground is less than 10%. For this 
reason, shunt motors are considered to be constant speed 
motors (Figure 2).  
 
 
NO
 LO
AD
 CU
RR
ENT
FU
LL
LO
AD
 CU
RRE
NT
ST
ART
ING
 CU
RRE
NT
ARMATURE CURRENT
Figure 2
SPEED
TORQUE
 
 
In the separately excited motor, the motor is operated as a 
fixed field shunt motor in the normal running range.  
However,  when additional torque is required, for example, 
to climb non-level terrain, such as ramps and the like, the 
field current is increased to provide the higher level of 
torque.  In most cases, the armature to field ampere turn 
ratio can be very similar to that of a comparable size series 
motor (Figure 3.) 
 
  
NO
 LO
AD
 CU
RR
ENT
FU
LL
LO
AD
 CU
RRE
NT
ST
ART
ING
 CU
RRE
NT
ARMATURE CURRENT
Figure 3
SPEED
TORQUE
 
 
Aside from the constant horsepower characteristics 
described above, there are many other features that 
provide increased performance and lower cost. The