Analog Devices AD9609 Evaluation Board AD9609-65EBZ AD9609-65EBZ Scheda Tecnica

Codici prodotto
AD9609-65EBZ
Pagina di 32
  
AD9609
 
Rev. 0 | Page 21 of 32 
Clock Duty Cycle 
Typical high speed ADCs use both clock edges to generate 
a variety of internal timing signals and, as a result, may be 
sensitive to clock duty cycle. Commonly, a ±5% tolerance is 
required on the clock duty cycle to maintain dynamic 
performance characteristics.  
The AD9609 contains a duty cycle stabilizer (DCS) that retimes 
the nonsampling (falling) edge, providing an internal clock 
signal with a nominal 50% duty cycle. This allows the user to 
provide a wide range of clock input duty cycles without 
affecting the performance of the AD9609. Noise and distortion 
performance are nearly flat for a wide range of duty cycles with 
the DCS on, as shown in Figure 51.  
Jitter in the rising edge of the input is still of concern and is not 
easily reduced by the internal stabilization circuit. The duty 
cycle control loop does not function for clock rates less than 
20 MHz nominally. The loop has a time constant associated 
with it that must be considered in applications in which the 
clock rate can change dynamically. A wait time of 1.5 μs to 5 μs 
is required after a dynamic clock frequency increase or decrease 
before the DCS loop is relocked to the input signal.  
80
75
70
65
60
55
50
40
45
10
20
30
40
50
60
70
80
POSITIVE DUTY CYCLE (%)
SN
R
 (
d
B
F
S
)
08
54
1-
0
53
DCS ON
DCS OFF
 
Figure 51. SNR vs. DCS On/Off 
 
 
 
 
 
 
 
 
 
 
 
 
Jitter Considerations 
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low fre-
quency SNR (SNR
LF
) at a given input frequency (f
INPUT
) due to 
jitter (t
JRMS
) can be calculated by 
SNR
HF
 = −10 log[(2π × f
INPUT
 × t
JRMS
)
2
 + 10
)
10
/
(
LF
SNR
In the previous equation, the rms aperture jitter represents the 
clock input jitter specification. IF undersampling applications 
are particularly sensitive to jitter, as illustrated in Figure 52. 
80
75
70
65
60
55
50
45
1
10
100
1k
FREQUENCY (MHz)
S
NR (
d
BF
S
)
0.5ps
0.2ps
0.05ps
1.0ps
1.5ps
2.0ps
2.5ps
3.0ps
0
854
1-
0
22
 
Figure 52. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal when 
aperture jitter may affect the dynamic range of the AD9609. To 
avoid modulating the clock signal with digital noise, keep power 
supplies for clock drivers separate from the ADC output driver 
supplies. Low jitter, crystal-controlled oscillators make the best 
clock sources. If the clock is generated from another type of source 
(by gating, dividing, or another method), it should be retimed by 
the original clock at the last step. 
For more information, see the AN-501 Application Note and 
the AN-756 Application Note available at