Analog Devices AD9609 Evaluation Board AD9609-20EBZ AD9609-20EBZ Scheda Tecnica

Codici prodotto
AD9609-20EBZ
Pagina di 32
  
AD9609
 
Rev. 0 | Page 17 of 32 
THEORY OF OPERATION 
The AD9609 architecture consists of a multistage, pipelined ADC. 
Each stage provides sufficient overlap to correct for flash errors in 
the preceding stage. The quantized outputs from each stage are 
combined into a final 10-bit result in the digital correction logic. 
The pipelined architecture permits the first stage to operate with a 
new input sample while the remaining stages operate with pre-
ceding samples. Sampling occurs on the rising edge of the clock. 
Each stage of the pipeline, excluding the last, consists of a low 
resolution flash ADC connected to a switched-capacitor DAC 
and an interstage residue amplifier (for example, a multiplying 
digital-to-analog converter (MDAC)). The residue amplifier 
magnifies the difference between the reconstructed DAC output 
and the flash input for the next stage in the pipeline. One bit of 
redundancy is used in each stage to facilitate digital correction 
of flash errors. The last stage simply consists of a flash ADC. 
The output staging block aligns the data, corrects errors, and 
passes the data to the CMOS output buffers. The output buffers 
are powered from a separate (DRVDD) supply, allowing adjust-
ment of the output voltage swing. During power-down, the 
output buffers go into a high impedance state. 
ANALOG INPUT CONSIDERATIONS 
The analog input to the AD9609 is a differential switched-
capacitor circuit designed for processing differential input 
signals. This circuit can support a wide common-mode range 
while maintaining excellent performance. By using an input 
common-mode voltage of midsupply, users can minimize 
signal-dependent errors and achieve optimum performance. 
S
S
H
C
PAR
C
SAMPLE
C
SAMPLE
C
PAR
VIN–
H
S
S
H
VIN+
H
08
54
1-
0
06
 
Figure 34. Switched-Capacitor Input Circuit 
The clock signal alternately switches the input circuit between 
sample-and-hold mode (see Figure 34). When the input circuit 
is switched to sample mode, the signal source must be capable 
of charging the sample capacitors and settling within one-half 
of a clock cycle. A small resistor in series with each input can 
help reduce the peak transient current injected from the output 
stage of the driving source. In addition, low Q inductors or ferrite 
beads can be placed on each leg of the input to reduce high diffe-
rential capacitance at the analog inputs and, therefore, achieve 
the maximum bandwidth of the ADC. Such use of low Q inductors 
or ferrite beads is required when driving the converter front end at 
high IF frequencies. Either a shunt capacitor or two single-ended 
capacitors can be placed on the inputs to provide a matching 
passive network. This ultimately creates a low-pass filter at the 
input to limit unwanted broadband noise. See the AN-742 
Application Note, the AN-827 Application Note, and the Analog 
Dialogue
 article “
” (Volume 39, April 2005) for more information. In 
general, the precise values depend on the application. 
Input Common Mode  
The analog inputs of the AD9609 are not internally dc-biased. 
Therefore, in ac-coupled applications, the user must provide a 
dc bias externally. Setting the device so that VCM = AVDD/2 is 
recommended for optimum performance, but the device can 
function over a wider range with reasonable performance, as 
shown in Figure 35 and Figure 36.  
50
60
70
80
90
100
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
S
NR/
S
F
DR (
d
BF
S
/d
B
c)
INPUT COMMON-MODE VOLTAGE (V)
SFDR (dBc)
SNR (dBFS)
0
85
41
-1
39
 
Figure 35. SNR/SFDR vs. Input Common-Mode Voltage,  
f
IN
 = 32.1 MHz, f
S
 = 80 MSPS  
50
60
70
80
90
100
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
S
NR/
S
F
DR (
d
BF
S
/d
B
c)
INPUT COMMON-MODE VOLTAGE (V)
SFDR (dBc)
SNR (dBFS)
0
85
41
-1
40
 
Figure 36. SNR/SFDR vs. Input Common-Mode Voltage,  
f
IN
 = 10.3 MHz, f
S
 = 20 MSPS  
An on-board, common-mode voltage reference is included in 
the design and is available from the VCM pin. The VCM pin 
must be decoupled to ground by a 0.1 μF capacitor, as described 
in the Applications Information section.