Fujifilm Xeon 5110 S26361-F3250-L160 데이터 시트

제품 코드
S26361-F3250-L160
다운로드
페이지 112
Dual-Core Intel
® 
Xeon
® 
Processor 5100 Series Datasheet
69
Signal Definitions
INIT#
I
INIT# (Initialization), when asserted, resets integer registers inside all processors 
without affecting their internal caches or floating-point registers. Each processor then 
begins execution at the power-on Reset vector configured during power-on 
configuration. The processor continues to handle snoop requests during INIT# 
assertion. INIT# is an asynchronous signal and must connect the appropriate pins of 
all processor FSB agents.
2
LINT[1:0]
I
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all FSB agents. 
When the APIC functionality is disabled, the LINT0/INTR signal becomes INTR, a 
maskable interrupt request signal, and LINT1/NMI becomes NMI, a nonmaskable 
interrupt. INTR and NMI are backward compatible with the signals of those names on 
the Pentium
®
 processor. Both signals are asynchronous.
These signals must be software configured via BIOS programming of the APIC register 
space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by 
default after Reset, operation of these pins as LINT[1:0] is the default configuration.
2
LL_ID[1:0]
O
The LL_ID[1:0] signals are used to select the correct loadline slope for the processor. 
These signals are not connected to the processor die. A logic 0 is pulled to ground and 
a logic 1 is a no-connect on the Dual-Core Intel
® 
Xeon
® 
Processor 5100 Series  
package.
LOCK#
I/O
LOCK# indicates to the system that a transaction must occur atomically. This signal 
must connect the appropriate pins of all processor FSB agents. For a locked sequence 
of transactions, LOCK# is asserted from the beginning of the first transaction to the 
end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the processor 
FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to 
retain ownership of the processor FSB throughout the bus locked operation and 
ensure the atomicity of lock.
3
MCERR#
I/O
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable 
error without a bus protocol violation. It may be driven by all processor 
FSB agents.
MCERR# assertion conditions are configurable at a system level. Assertion 
options are defined by the following options:
• Enabled or disabled.
• Asserted, if configured, for internal errors along with IERR#.
• Asserted, if configured, by the request initiator of a bus transaction after it 
observes an error.
• Asserted by any bus agent when it observes an error in a bus transaction.
For more details regarding machine check architecture, refer to the IA-32 Software 
Developer’s Manual, Volume 3: System Programming Guide.
MS_ID[1:0]
O
These signals are provided to indicate the Market Segment for the processor and may 
be used for future processor compatibility or for keying. These signals are not 
connected to the processor die. A logic 0 is pulled to ground and a logic 1 is a no-
connect on the Dual-Core Intel
® 
Xeon
® 
Processor 5100 Series  package.
PECI
I/O
PECI is a proprietary one-wire bus interface that provides a communication channel 
between Intel processor and chipset components to external thermal monitoring 
devices. Se
 for more on the PECI interface.
PROCHOT#
O
PROCHOT# (Processor Hot) will go active when the processor’s temperature 
monitoring sensor detects that the processor has reached its maximum safe operating 
temperature. This indicates that the Thermal Control Circuit (TCC) has been 
activated, if enabled. The TCC will remain active until shortly after the processor 
deasserts PROCHOT#. Se
 for more details.
PWRGOOD
I
PWRGOOD (Power Good) is an input. The processor requires this signal to be a clean 
indication that all processor clocks and power supplies are stable and within their 
specifications. “Clean” implies that the signal will remain low (capable of sinking 
leakage current), without glitches, from the time that the power supplies are turned 
on until they come within specification. The signal must then transition monotonically 
to a high state. PWRGOOD can be driven inactive at any time, but clocks and power 
must again be stable before a subsequent rising edge of PWRGOOD. It must also 
meet the minimum pulse width specification in 
, and be followed by a 1-
10 ms RESET# pulse.
The PWRGOOD signal must be supplied to the processor; it is used to protect internal 
circuits against voltage sequencing issues. It should be driven high throughout 
boundary scan operation.
2
Table 5-1.
Signal Definitions (Sheet 5 of 7)
Name
Type
Description
Notes