Cisco Aironet 2702i AIR-CAP2702I-E-K9 Folheto

Códigos do produto
AIR-CAP2702I-E-K9
Página de 25
 
 
© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. 
Page 4 of 25 
Enterprise networks considering an investment in infrastructure Wi-Fi have two excellent choices: (1) buy 802.11n 
APs, since they deliver a remarkable level of performance, they are available today, and 802.11n is widely 
deployed in client products, or (2) wait for 802.11ac APs and their state-of-the-art performance. A third option 
avoids the wait: invest in a modular 802.11n AP such as the 
, which is 
readily field-upgradable to 802.11ac, or the Cisco Aironet 3700 Series Access Point, which supports an integrated 
802.11ac radio. 
802.11ac will have a few effects on existing 802.11a/n deployments, even if the deployment is not upgraded to 
802.11ac immediately: (1) the wider channel bandwidths of neighboring APs require updates to radio resource 
management, or RRM (and in particular the dynamic channel assignment algorithm), and (2) 802.11a/n wireless 
intrusion protection systems (WIPS) can continue to decode most management frames such as beacon and probe 
request/response frames (that are invariably sent in 802.11a format) but do not have visibility into data sent in the 
new 802.11ac packet format. 
One thing not to worry about is compatibility. 802.11ac is designed in a deep way to coexist efficiently with existing 
802.11a/n devices, with strong carrier sense, a single new preamble that appears to be a valid 802.11a preamble 
to 802.11a/n devices, and extensions to request-to-send/clear-to-send (RTS/CTS) to help avoid collisions with 
users operating on slightly different channels. 
2. What Is 802.11ac? 
First, 802.11ac is an evolution of 802.11n. If you want to learn more about 802.11n, jump to the Appendix. If you 
are already familiar with the channel bonding, MIMO, and aggregation introduced by 802.11n, and y
ou don’t need 
a refresher, read on. 
2.1 Drivers for 802.11ac 
802.11ac is an evolutionary improvement to 802.11n. One of the goals of 802.11ac is to deliver higher levels of 
performance that are commensurate with Gigabit Ethernet networking: 
● 
A s
eemingly “instantaneous” data transfer experience 
● 
A pipe fat enough that delivering a high quality of experience (QoE) is straightforward 
In the consumer space, the target is multiple channels of high-definition (HD) content delivered to all areas of the 
house. The enterprise has different challenges: 
● 
Delivering network with enterprise-class speeds and latencies 
● 
High-density environments with scores of clients per AP 
◦ 
Which are exacerbated by th
 trend, such that one employee might carry two or even three 
802.11 devices and have them all consuming network resources at the same time 
● 
The increased adoption of video streaming 
802.11ac is about delivering an outstanding experience to each and every client served by an AP, even under 
demanding loads. 
Meanwhile, 802.11 is integral to a hugely broad range of devices, and some of them are highly cost, power, or 
volume constrained. One antenna is routine for these devices, yet 802.11ac must still deliver peak efficiency. 
The one thing that 802.11ac has in its favor is the evolutionary improvement to silicon technology over the past 
half-dozen years: channel bandwidths can be wider, constellations can be denser, and APs can integrate more 
functionality.