Cisco Aironet 2702i AIR-CAP2702I-E-K9 Folheto

Códigos do produto
AIR-CAP2702I-E-K9
Página de 25
 
 
© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. 
Page 5 of 25 
Figure 1.    How 802.11ac Accelerates 802.11n 
 
2.2 How Does 802.11ac Go So Fast? 
Wireless speed is the product of three factors: channel bandwidth, constellation density, and number of spatial 
streams. 802.11ac pushes hard on the boundaries on each of these, as shown in 
. 
For the mathematically inclined, the physical layer speed of 802.11ac is calculated according to 
For 
instance, an 80-MHz transmission sent at 256QAM with three spatial streams and a short guard interval delivers 
234 × 3 × 5/6 × 8 bits/3.6 microseconds = 1300 Mbps. 
Table 1. 
Calculating the Speed of 802.11n and 802.11ac  
PHY 
Bandwidth (as Number of 
Data Subcarriers) 
× 
Number of Spatial 
Streams 
× 
Data Bits per 
Subcarrier 
÷ 
Time per OFDM 
Symbol 
PHY Data 
Rate 
(bps) 
802.11n or 
802.11ac 
56 (20 MHz) 
1 to 4  
Up to 5/6 × log
2
(64) = 
3.6 microseconds 
(short guard interval) 
108 (40 MHz) 
4 microseconds (long 
guard interval) 
802.11ac 
only 
234 (80 MHz) 
5 to 8  
Up to 5/6 × log
2
(256) ≈ 
6.67 
 
2 × 234 (160 MHz) 
Immediately we see that increasing the channel bandwidth to 80 MHz yields 2.16 times faster speeds, and 160 
MHz offers a further doubling. Nothing is for free: it does consume more spectrum, and each time we’re splitting 
the same transmit power over twice as many subcarriers, so the speed doubles, but the range for that doubled 
speed is slightly reduced (for an overall win). 
Going from 64QAM to 256QAM also helps, by another 8/6 = 1.33 times faster. Being closer together, the 
constellation points are more sensitive to noise, so 256QAM helps most at shorter range where 64QAM is already 
reliable. Still, 256QAM doesn’t require more spectrum or more antennas than 64QAM. 
The speed is directly proportional to the number of spatial streams. More spatial streams require more antennas, 
RF connectors, and RF chains at transmitter and receiver. The antennas should be spaced one-third of a 
wavelength (3/4 inch) or more apart, and the additional RF chains consume additional power. This drives many 
mobile devices to limit the number of antennas to one, two, or three.