Справочник Пользователя для National Instruments Ultiboard

Скачать
Страница из 281
Chapter 6
PCB Calculators
© National Instruments Corporation
6-7
Dual Stripline Equations
The equations used to perform the dual stripline calculations are: 
Z0 = 30*( ln(8*H/(0.67*3.1415926*(0.8*W+T)))+ 
ln(8*(H+C)/(0.67*3.1415926*(0.8*W+T))))/sqrt(Er)
Tpd = 84.66667*sqrt(Er)
C0 = Tpd/Z0
L0 = C0*Z0*Z0
PCB Differential Impedance Calculator 
To control reflections on high-speed PCBs, it is necessary to make the 
traces appear as if they are transmission lines. This is done by calculating 
the characteristic impedance of the trace (Zo) and then terminating it with 
its characteristic impedance. This makes the trace appear like an infinitely 
long transmission line, and it will therefore have no reflections, even 
though in reality it has a finite length. (What actually occurs is that all of 
the energy that travels down the trace is absorbed, and there is no energy 
left to reflect back.) Once you have calculated Zo, you can use it to design 
the trace’s termination. 
If two traces in a differential pair are placed closely together, the 
differential impedance (Zdiff) of the pair must be calculated for proper 
trace termination. (This is the Differential Impedance Rule.) 
There are a number of methods used to terminate transmission lines, for 
example, series termination, diode termination, which are beyond the scope 
of this manual. We recommend that you refer to any number of available 
texts on the subject. 
Note
Equations used are based on the IPC-D-317A document from the IPC organization 
(
www.ipc.org
). 
The PCB Differential Impedance Calculator performs calculations for 
two traces that carry signals that are exactly equal and opposite (a 
differential pair).