National Instruments ni matrixx xmath 用户手册

下载
页码 127
Chapter 4
Frequency-Weighted Error Reduction
4-18
ni.com
Controller reduction proceeds by implementing the same connection rule 
but on reduced versions of the two transfer function matrices. 
When K
E
 has been defined through Kalman filtering considerations, the 
spectrum of the signal driving K
E
 in Figure 4-5 is white, with intensity Q
yy
It follows that to reflect in the multiple input case the different intensities 
on the different scalar inputs, it is advisable to introduce at some stage a 
weight 
 into the reduction process.
Algorithm
After preliminary checks, the algorithm steps are:
1.
Form the observability and weighted (through Q
yy
) controllability 
grammians of E(s) in Equation 4-7 by
(4-8)
(4-9)
2.
Compute the square roots of the eigenvalues of PQ (Hankel singular 
values of the fractional representation of Equation 4-5). The maximum 
order permitted is the number of nonzero eigenvalues of PQ that are 
larger than 
ε. 
3.
Introduce the order of the reduced-order controller, possibly by 
displaying the Hankel singular values (HSVs) to the user. Broadly 
speaking, one can throw away small HSVs but not large ones.
4.
Using 
redschur( )
-type calculations, find a state-variable 
description of E
r
(s). This means that E
r
(s) is the transfer function 
matrix of a truncation of a balanced realization of E(s), but the 
redschur( )
 type calculations avoid the possibly numerically 
difficult step of balancing the initially known realization of E(s). 
Suppose that:
5.
Define the reduced order controller C
r
(s) by
(4-10)
so that
Q
yy
1 2
P A BK
R
(
)′
A BK
R
(
)P
+
K
E
Q
yy
K
E
=
Q A BK
R
(
)
A BK
R
(
)′Q
+
K
R
K
R
C
C
=
Aˆ
S
lbig
A BK
R
(
)S
rbig
K
E
,
S
lbig
K
E
=
=
A
CR
S
lbig
A BK
R
K
E
C
(
)S
rbig
=
C
r
s
( )
C
CR
sI A
CR
(
)
1
B
CR
=