National Instruments ni matrixx xmath 用户手册

下载
页码 127
Chapter 4
Frequency-Weighted Error Reduction
4-20
ni.com
Additional Background
A discussion of the stability robustness measure can be found in [AnM89] 
and [LAL90]. The idea can be understood with reference to the transfer 
functions E(s) and E
r
(s) used in discussing 
type="right perf"
. It is 
possible to argue (through block diagram manipulation) that
C(s) stabilizes P(s) when E(s) stabilizes (as a series compensator) with 
unity negative feedback 
.
E
r
(s) also will stabilize [P(s)I], and then C
r
(s) will stabilize P(s), 
provided
(4-14)
Accordingly, it makes sense to try to reduce E by frequency-weighted 
balanced truncation. When this is done, the controllability grammian for 
E(s) remains unaltered, while the observability grammian is altered. (Hence 
Equation 4-5, at least with Q
yy
I, and Equation 4-12 are the same while 
Equation 4-6 and Equation 4-13 are quite different.) The calculations 
leading to Equation 4-13 are set out in [LAL90]. 
The argument for 
type="left perf"
 is dual. Another insight into 
Equation 4-14 is provided by relations set out in [NJB84]. There, it is 
established (in a somewhat broader context) that
The left matrix is the weighting matrix in Equation 4-14; the right matrix is 
the numerator of C(j
ω) stacked on the denominator, or alternatively 
E(j
ω) + 
This formula then suggests the desirability of retaining the weight in the 
approximation of E(j
ω) by E
r
( j
ω)
Pˆ s
( )
P s
( ) I
=
C j
ωI A
K
E
C
+
(
)
1
B I C j
ωI A
K
E
C
+
(
)
1
K
E
E j
ω
( ) E
e
j
ω
( )
[
]
1
<
C j
ωI A
K
E
C
+
(
)
1
B
I C j
ωI A
K
E
C
+
(
)
1
K
E
{
}
K
r
sI A BK
R
+
(
)
1
K
E
I C j
ωI A
BK
R
+
(
)
1
K
E
+
×
I
=
0
I