Delta Tau GEO PMAC User Manual

Page of 117
Geo PMAC Drive User Manual 
System Wiring 
29 
The electrical resistive losses in a 3-phase motor in a constant deceleration to stop can be calculated as: 
d
t
pp
R
2
rms
i
2
3
LE
E
=
 
where: 
E
LE
 is the lost energy in joules (J) 
i
rms
 is the current required for the deceleration in amperes (A), equal to the required deceleration torque 
divided by the motor’s (rms) torque constant K
T
 
R
pp
 is the phase-to-phase resistance of the motor, in ohms (Ω) 
t
d
 is the deceleration time in seconds (s) 
Capacitive Stored Energy in the Drive 
The energy not lost during the transformation is initially stored as additional capacitive energy due to the 
increased DC bus voltage.  The energy storage capability of the drive can be expressed as: 
(
)
2
nom
V
2
regen
V
C
2
1
C
E
=
 
where: 
E
C
 is the additional energy storage capacity in joules (J) 
C is the total bus capacitance in Farads 
V
regen
 is the DC bus voltage at which the regeneration circuit would have to activate, in volts (V) 
V
nom
 is the normal DC bus voltage, in volts (V) 
Evaluating the Need for a Regen Resistor 
Any starting kinetic energy that is not lost in the transformation and cannot be stored as bus capacitive 
energy must be dumped by the regeneration circuitry in to the regen (shunt) resistor.  The following 
equation can be used to determine whether this will be required: 
C
E
LE
E
LM
E
K
E
excess
E
=
 
If E
excess
 in this equation is greater than 0, a regen resistor will be required. 
Regen Resistor Power Capacity 
A given regen resistor will have both a peak (instantaneous) and a continuous (average) power dissipation 
limit.  It is therefore necessary to compare the required peak and continuous regen power dissipation 
requirements against the limits for the resistor. 
The peak power dissipation that will occur in the regen resistor in the application will be: 
R
2
regen
V
peak
P
=
 
where: 
P
peak
 is peak power dissipation in watts (W) 
V
regen
 is the DC bus voltage at which the regeneration circuit activates, in volts (V) 
R is the resistance value of the regen resistor, in ohms (Ω) 
However, this power dissipation will not be occurring all of the time, and in most applications, only for a 
small percentage of the time.  Usually, the regen will only be active during the final part of a lengthy 
deceleration, after the DC bus has charged up to the point where it exceeds the regen activation voltage.  
The average power dissipation value can be calculated as: 
100
time
on
%
peak
P
avg
P
=
 
where: 
P
avg
 is average power dissipation in watts (W) 
%on-time is the percentage of time the regen circuit is active