Cisco Cisco CRS-X Multishelf System White Paper

Page of 12
 
 
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. 
Page 2 of 12 
Adding backbone capacity is costly. Until recently, service providers chose this option, because they were 
confident about getting a return on their investments. By 2015, however, adding capacity will carry more risk than 
reward. A breaking point will be reached where the costs of expanding backbone networks will exceed the revenue 
potential present in the traffic carried.
1
 There are many factors moving service providers toward this breaking point, 
some technical, some architectural, and some organizational. They all result from the manner in which backbone 
architectures have traditionally been built. Continued reliance on conventional linear scaling solutions, adding 
components to increase capacity, as a way to address nonlinear issues will eventually result in decreasing returns 
to scale. To pull back from this breaking point, a new method for growing backbone networks must be found. 
This method must address multiple dimensions at once and eliminate architectural boundaries, isolated 
administrative domains, and the inefficiencies affecting the packet, optical TDM, and DWDM layers. 
Existing solutions focus on solving a single dimension of a multidimensional problem. Alternative architectures for 
the IP core, such as the lean core and hollow core, focus on reducing capital costs. Separately, new multilayer 
control-plane protocols focus on increasing efficiencies between the transport and IP layers. If implemented 
independently, neither an alternative core architecture nor a new protocol will yield justifiable returns on 
investment. Therefore, to thrive, service providers must find ways to increase revenue and reduce capital and 
operational costs from their backbone networks, while increasing bandwidth, flexibility, and efficiency. 
Alternative Backbone Architectures 
Alternative backbone architectures attempt to eliminate the need for a traditional full IP core architecture, with the 
goal of decreasing costs. New developments in platforms and protocols offer alternatives to full IP core 
architectures, but sacrifices are made in flexibility and efficiency in favor of cost cutting. The two predominant 
alternative architectures, hollow core and lean core offer initial savings, risking the long-term investment protection 
inherent in full IP core architectures. 
Hollow core architectures attempt to eliminate the costs associated with core backbone routers by replacing them 
with a transport switching function (most often assumed to be an optical transport (OTN) switching layer) that offers 
a lower overall cost per bit for a given interface speed. 
In the hollow core model, these switches create a dense mesh of circuits between each of the edge and peering 
nodes. As with the full IP core, the packet, optical TDM, and DWDM layers are managed separately, and there is 
little control-plane integration. In many cases even this level of integration will not be possible because the 
interface between the packet and TDM layers will be via Ethernet VLANs multiplexed onto circuits by specialized 
transponders that preclude G.709-based inter-layer communication. This lack of control-plane integration prevents 
topology information from being shared between the packet, optical TDM, and DWDM layers. Routers know only 
the routing topology, and the DWDM and TDM switches know only the optical topology. 
Lean core architectures are an adaptation of full IP architectures in which backbone routers have reduced network 
processing unit (NPU) functionality or memory. With reduced NPU memory, the router can only learn internal 
routes, which forces operators to use Multiprotocol Label Switching (MPLS) to forward subscriber traffic instead of 
IP. Another option for cutting the cost of NPUs would be reducing their functionality to a minimum so that they are 
only capable of providing transport functionality and forwarding via MPLS. 
                                                 
1
“Service Provider Capex, Revenue, and Capex by Equipment Type,” Infonetics, 2012; “Core and Edge Routers 5-Year 
Forecast,” Dell’Oro Group, January 2012; and “Evolving Backbone Networks Using and MPLS SuperCore, Juniper, June 2011.