Intel Atom Processor N270 AU80586GE025D Data Sheet

Product codes
AU80586GE025D
Page of 57
 
Low Power Features 
 
 
18  
 Datasheet 
2.4 
Enhanced Low-Power States 
Enhanced low-power states (C1E, C2E, C4E) optimize for power by forcibly reducing 
the performance state of the processor when it enters a package low-power state. 
Instead of directly transitioning into the package low-power state, the enhanced 
package low-power state first reduces the performance state of the processor by 
performing an Enhanced Intel SpeedStep Technology transition down to the lowest 
operating point. Upon receiving a break event from the package low-power state, 
control will be returned to software while an Enhanced Intel SpeedStep Technology 
transition up to the initial operating point occurs. The advantage of this feature is that 
it significantly reduces leakage while in the Stop-Grant and Deeper Sleep states.  
Note:  Long-term reliability cannot be assured unless all the Enhanced Low-Power States are 
enabled. 
The processor implements two software interfaces for requesting enhanced package 
low-power states: MWAIT instruction extensions with sub-state hints and via BIOS by 
configuring a software programmable MSR bit to automatically promote package low-
power states to enhanced package low-power states.  
Enhanced Intel SpeedStep Technology transitions are multi-step processes that 
require clocked control. These transitions cannot occur when the processor is in the 
Sleep or Deep Sleep package low-power states since processor clocks are not active in 
these states. Enhanced Deeper Sleep is an exception to this rule when the Hard C4E 
configuration is enabled in a software programmable MSR bit. This Enhanced Deeper 
Sleep state configuration will lower core voltage to the Deeper Sleep level while in 
Deeper Sleep and, upon exit, will automatically transition to the lowest operating 
voltage and frequency to reduce snoop service latency. The transition to the lowest 
operating point or back to the original software requested point may not be 
instantaneous. Furthermore, upon very frequent transitions between active and idle 
states, the transitions may lag behind the idle state entry resulting in the processor 
either executing for a longer time at the lowest operating point or running idle at a 
high operating point. Observations and analyses show this behavior should not 
significantly impact total power savings or performance score while providing power 
benefits in most other cases.